Ultra high performance of core-shell structured Ir@Pt/C catalyst prepared by a facile pulse electrochemical deposition

Chen Dana,b, Liao Shijuna,b*

a The Key Laboratory of Fuel Cell Technology of Guangdong Province & The Key Laboratory of New Energy Technology of Guangdong Universities.

b School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou 510641, China

Low platinum catalyst attracts much attention recently due to it may effectively decrease the usage of platinum, and may make the commercialization of PEM fuel cell possible. The core-shell catalyst is recognized as the most important and promising low platinum catalyst, generally, the core-shell catalyst could enhance the utilization of platinum over three times.

In this paper, we reported a core-shell Ir@Pt/C catalyst, which is prepared by covering a thin Pt shell layer on the carbon supported Ir nanoparticles. The loading of Ir and Pt are 30% and 20% respectively. The catalyst shows 3 times higher mass activity towards the anodic oxidation of methanol, and 2.5 times higher mass activity towards the cathodic reduction of oxygen than commercial Pt/C catalyst (the loading of Pt is 40%). It is interesting that the Ib/If for the Ir@Pt/C towards anodic oxidation of methanol is almost same as that of Pt/C catalyst. Furthermore, a large cathodic shift (80 mV) of onset potential for oxidation of the adsorbed CO on the Ir@Pt/C and commercial Pt/C catalyst is observed, indicating that the Ir@Pt/C catalyst may have better ability for the removal of adsorbed CO, or that the Ir@Pt/C catalyst has better tolerance towards the CO.

Fig. A CO-stripping spectra of Ir@Pt/C and commercial Pt/C(JM4100) catalysts; Fig. B Cyclic voltammograms of Ir@Pt/C and JM Pt/C catalysts in 0.1M HClO\textsubscript{4} and 1M CH\textsubscript{3}OH solution at room temperature, and their related column diagrams showing the current densities at 0.6V(vs Ag/AgCl); Fig. C. Linear sweep(LSVs) spectra of Ir@Pt/C and JM Pt/C catalysts in oxygen saturated 0.1M HClO\textsubscript{4} solution, the inset is the column diagrams showing the mass current densities at 0.6V(vs.Ag/AgCl).

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (21076089, 20876062, 26073040) and Doctoral Fund of Ministry of Education of China (20110172110012).

References
