Two-Dimensional Nanoporous MnO$_2$ with Enhanced Supercapacitor Performance

Wenyao Zhang, Huayu Qian and Xin Wang*
Key Laboratory of Soft Chemistry and Functional Materials, Nanjing University of Science and Technology, Ministry of Education, Nanjing 210094, China

1. Background

In recent decades, supercapacitors have attracted much attention because of their higher power density, longer cycle life than batteries, and their higher energy density compared to conventional capacitors [1]. MnO$_2$ is known as a promising electrode material for applications in supercapacitors and has raised much interest because of its environmental friendliness, low cost, and high theoretical specific capacitance [2]. Unfortunately, MnO$_2$ usually delivers a low specific capacitance due to a low specific surface area. To a great extent, nanoscale MnO$_2$ particles possess large surface area and relatively high specific capacitance, but the microstructure is easily damaged during electrochemical cycling, giving a relatively poor electrochemical stability [3]. Graphitic carbon nitride with the C$_3$N$_4$ stoichiometry is considered as an analogue of graphite, and possesses a stacked 2D structure, which composed of the condensed tri-s-triazine subunits with a periodic array of carbon vacancies [4-6]. As far as we know, transmitting the morphology of 2D nanoporous structure from C$_3$N$_4$ to as-prepared metal oxides has rarely been reported.

2. Aims

The in situ formation of MnO$_2$ nanoparticles on the framework of Carbon Nitride (C$_3$N$_4$) may result in the same structure of MnO$_2$ by morphology transmission, leading to the improved electrochemical performance like capacitance. Our purpose is to design a facile and green route for the synthesis of 2D nanoporous MnO$_2$ as stable electrode materials for enhanced performance supercapacitor.

3. Methods

As shown in Figure 1, C$_3$N$_4$ dispersion was produced by exfoliation of bulk C$_3$N$_4$ in NMP by bath sonication [8]. With the introduction of KMnO$_4$, aqueous solution into the C$_3$N$_4$ dispersion system, the carbon atoms of C$_3$N$_4$ framework would react with MnO$_2$ in situ to form nanoporous MnO$_2$. The mixture was kept standing under ambient conditions for 12 h, at which time all the carbon atoms of C$_3$N$_4$ were replaced by MnO$_2$ molecules, then the samples of 2D nanoporous MnO$_2$ can be achieved.

4. Results

The electrochemical performance of 2D nanoporous MnO$_2$ was characterized using CV and galvanostatic charge-discharge measurements in 1 M Na$_2$SO$_4$ solution. As shown in Figure 2, the rectangular and symmetric CV curves of as-synthesized MnO$_2$ indicate the ideal capacitive behavior of the as-fabricated electrode. And it exhibits a good capacitance, reaching 327.31 F·g$^{-1}$, which is much more competitive than pure C$_3$N$_4$ (9.15 F·g$^{-1}$) and nano-MnO$_2$ (211.2 F·g$^{-1}$) [7]. Moreover, during the charging and discharging steps there is still around 86% initial capacitance retention even when the current density increases 20 times. Additionally, when the charge-discharge was cycled at 500 mA·g$^{-1}$, there is only a slight decrease in capacitance of less than 15% even after 1000 cycles, demonstrating a great stability.

5. Conclusions

A general procedure by in situ substituting the carbon atoms in the framework of C$_3$N$_4$ to produce 2D nanoporous MnO$_2$ has been developed. The as-synthesized MnO$_2$ not only introduce more electrochemical active specific surfaces for absorption/desorption of electrolyte ions, but also bring additional interfaces at the periodic vacancies to facilitate charge transport during charging/discharging processes. The unique structural design for supercapacitors electrodes enables great performance enhancements compared to nanoscale MnO$_2$ electrodes, exhibiting high specific capacitances, excellent rate capability and cycling stability. Such 2D nanoporous material is expected to be a highly promising candidate for application in high-performance energy storage systems.

Reference