Physiochemical properties of 1,2,4-triazolium perchlorobutanesulfonate as an archetypal pure protic organic ionic plastic crystal electrolyte

Jiangshui Luo,1,2 Neil R. Brooks,3 Jeroen Snickers,3 Annetteke Hindhede Jensen,4 Qingfeng Li,4 Martin Knipper,5 Bram Vanroy,6 Michael Wübbenhorst,6 Chengzhi Shi,7 Feng Yan,7 Jianhua Fang,7 Luc Van Meervelt,7 Koen Binnebomans,7 and Jan Fransaer1

1 Dept. of Metallurgy and Materials Engineering, KU Leuven, Leuven 3001, Belgium
2 Centre for Surface Chemistry and Catalysis, KU Leuven, Leuven 3001, Belgium
3 Dept. of Chemistry, KU Leuven, Leuven 3001, Belgium
4 Dept. of Energy Conversion and Storage, Technical University of Denmark, Kgs. Lyngby 2800, Denmark
5 Dept. of Physics, University of Oldenburg, Oldenburg 26129, Germany
6 Dept. of Physics and Astronomy, KU Leuven, Leuven 3001, Belgium
7 Dept. of Polymer Science and Engineering, Soochow University, Suzhou 215123, China
8 School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

High temperature polymer electrolyte membrane fuel cells (PEMFCS) operating between 100 °C and 200 °C are desirable because they offer significant benefits, such as improved electrode kinetics, simpler water and heat management, and better tolerance to fuel impurities, leading to higher overall system efficiencies [1]. However, state-of-the-art high temperature PEMFCs suffer from leakage problems associated with liquid electrolytes, such as H3PO4 and protic ionic liquids [2,3].

Recently, organic ionic plastic crystals (OIPCs), which are unique electrolyte materials due to their superior properties such as intrinsic ionic conductivity, non-flammability, negligible vapor pressure, plasticity, high thermal stability, and wide electrochemical window [4–7], are promising for the realization of all-solid-state PEMFCs [6,7]. While the OIPCs used as electrolytes for PEMFCs should be proton-conducting, they are often hosting anhydrous proton conductor for the realization of an all-solid-state high temperature PEMFC.

In order to obviate the use of dopants that may be incompatible with the host matrix of plastic crystals, we have developed some highly proton-conductive pure plastic crystals that are protic OIPCs, as they are protic molten salts when they are in the liquid state [2]. Here, we present our recent work on 1,2,4-triazolium perchlorobutanesulfonate (1) as a model proton conductor for high temperature PEMFCs.

Firstly, 1 (Fig. 1) was synthesized by mixing equimolar amounts of 1H-1,2,4-triazole and perchlorobutanesulfonic acid (CF3C6H4SO2Cl), followed by heating at 190 °C for 2 h to promote the complete formation of the organic salt. 1 was purified by evaporating in a Schlenk line at 190 °C for 12 h to eliminate water and the excess base or acid. Infrared spectra confirmed the formation and purity of the organic salt. Thermogravimetric analysis and isothermal gravimetric analysis showed the superior thermal stability of 1. Differential scanning calorimetry (DSC) of 1 in the form of both fine powders and pellets showed two solid-solid phase transitions at 77 °C and 87 °C, respectively, wherein only the latter seemed to be reversible. At the melting point of 181 °C, 1 exhibited an entropy of fusion (ΔSf) of 46.0 J mol−1 K−1, which falls in the normal range of ΔSf values for OIPCs [4]. Temperature-dependent X-ray diffraction (XRD) tests confirmed the two solid-solid phase transitions. Thermomechanical analysis further confirmed the DSC and XRD results while polarized optical microscopy excluded the possibility of partial melting at 77 °C and 87 °C. The wide temperature range for the plastic phase between 87 °C and 181 °C is ideal for the application of 1 in high temperature PEMFCs. Single crystals of 1 were grown by the vapor diffusion method. Single-crystal X-ray crystallography was performed successfully at 100 K and 300 K, which revealed the molecular structure of 1 and its strong N−H···O hydrogen bonding network. Scanning electron microscopy was employed to observe the morphology of 1 at different temperatures. Temperature-dependent Ramanspectra were recorded to study the N−H bond and hydrogen bonding of 1 and 1H−1,2,4-triazole at various temperatures. The temperature dependence of the ionic conductivity of 1 was measured by electrochemical impedance spectroscopy (conductivity spectroscopy), showing an ionic conductivity higher than 1 S cm−1 at 185 °C. In terms of fuel cell applications, the open circuit voltage (OCV) tests for H2/air single fuel cells using pellets of 1 showed a high OCV of 1.05 V at 50 °C. Furthermore, the measurement of high temperature PEMFC performance of an inert membrane matrix hosting 1 will be carried out soon.

In conclusion, as a pure protic OIPC, 1 is a promising anhydrous proton conductor for the realization of an all-solid-state high temperature PEMFC.

Acknowledgements
J. Luo acknowledges the Research Fund KU Leuven for a postdoctoral fellowship (PDM-short term).

References

Fig. 1 Chemical structure of the proton conductor 1.