Fabrication of Cu$_2$O/Ni core-shell inverse opal electrodes with three-dimensionally ordered macroporous for high capacitance supercapacitors

Ming-Jay Denga,**, Cheng-Chia Wangb, Pei-Jung Hob, Jin-Ming Chenc
deng.mj@nsrrc.org.tw or martinez730523@yahoo.com.tw

aNational Synchrotron Radiation Research Center (NSRRC), Hsinchu, Taiwan

bDepartment of Applied Science, National Hsinchu University of Education, Hsinchu, Taiwan

Nanomaterials for supercapacitors attract much attention because they can improve the power capabilities and life cycles of supercapacitors through their large surface area. In a nano-structured electrode, the distance within the material over which electrolyte ions must transport is smaller, and the larger surface area allows for a greater current density during charging and discharging. Here we report an ordered polystyrene (PS) template-assisted electrochemical approach with which we synthesized three-dimensional ordered macroporous (3DOM) Cu$_2$O/Ni inverse opals as electrodes for supercapacitor applications. The electrode nano-architecture can potentially improve power density in two ways: the 3DOM Ni substrate is expected to result in greater electrical conductivity than for a conventional disordered metal-oxide electrode, and the periodic pore structure inherent in ordered inverse opals might allow greater ionic conduction in the electrolyte-filled pores than for the circuitous pore structure in disordered metal-oxide electrodes. The 3DOM Cu$_2$O/Ni electrodes display superior kinetic performance, and satisfactory rate capability and cycling performance. The electrochemical characteristics of the resulting 3DOM Cu$_2$O/Ni architecture are then examined as a new design for pseudocapacitor electrodes.