Fe-42Ni alloy sheets by electroforming method for metal encapsulant of organic light emitting diodes

Moon Sick Hwang1, Sun Yong Kim1, Dong Jin Lee1, Min Su Lee1, Yoo Jin Lee1, Jae Hak Lee1, Tai Hong Yim2

1R&D Center, TGO Corporation, 164-5 Jangji-ri, Dongtan-myeun, Hwaseong, Gyeonggi 445-812, Korea, yjlee@tgopto.com
2Heat Treatment and Surface Engineering R&D Group, Korea Institute of Industrial Technology(KITECH), 7-47, Songdo-dong, Yeonsu-gu, Incheon 406-840, Korea

Fe-42Ni(58wt\% of Fe and 42wt\% of Ni) alloy sheets were deposited by electroforming method to apply metal encapsulation layers of organic light emitting diodes(OLED). Because Fe-42Ni alloy has the low coefficient of thermal expansion(CTE) and the high barrier performance against water vapor transmission and oxygen transmission\cite{1, 2}.

The composition of Fe and Ni elements is confirmed to 58wt\% of Fe and 42wt\% of Ni by X-ray fluorescence(XRF) analysis. Also, thermo-mechanical analysis(TMA) shows that the CTE of Fe-42Ni alloy after thermal treatment is below 6ppm/\degree C between 0~300\degree C and the water vapor transmission rate(WVTR) is below 0.005g/m\text{2}/day.

As the result of the OLED device test, the electroformed Fe-42Ni alloy show the same performance as the conventional rolled Fe-42Ni alloy after environmental test for 500hrs under relative humidity of 85\% and temperature at 85\degree C. It indicates that the electroformed Fe-42Ni alloy sheets are sufficiently applicable to the metal encapsulant of OLEDs.

References