Thickness dependent photocatalytic activity of TiO₂/Fe₂O₃ and FeTiO₃ thin films

Kuan-Hua Li and Yen-Hua Chen^{*} Department of Earth Sciences, National Cheng Kung University No.1, University Road, Tainan City 701, Taiwan

Photocatalysts have been widely studied and applied in the environment, deodorant, energy, air purification, surface self-cleaning, etc.. Since the illuminated decomposition of water into H_2 and O_2 was found by Fujishma and Honda, extensive studies have been done for photocatalytic properties of TiO₂ films. There have been committing to a variety of possible methods to enhance the efficiency of TiO₂ films.

According to previous researches: photocatalytic activity of TiO_2 anatase phase was better but only used in UV-light region. Hematite (α -Fe₂O₃) and ilmenite (FeTiO₃) can be applied in the Vis-light range, but their photocatalytic activity is poorer than TiO₂. In this study, we want to prepare TiO₂, Fe₂O₃, FeTiO₃, and TiO₂/Fe₂O₃ films with different thicknesses; then we would investigate and compare the photocatalytic efficiency of these films.

The TiO₂, Fe₂O₃, FeTiO₃, and TiO₂/Fe₂O₃ films were deposited on Si(100) substrates by R.F. magnetron sputtering system. The surface composition and chemical state of films were examined by X-ray photoelectron spectroscopy (XPS). The topography of these films was observed by an atomic force microscope (AFM). The band gap of all the films was measured by solid UV-Vis spectroscope. Moreover, the photodegradation of Methylene blue (M.B.) was investigated by liquid UV-Vis spectroscope. The photocatalytic activity and mechanism of these films dependent on film thickness would be also discussed.

Keywords: Thin film, TiO₂, Fe₂O₃, FeTiO₃, TiO₂/Fe₂O₃, photocatalysis.