# Nanocarbon/Polyoxometalate Composite Electrodes for Electrochemical Capacitors

Gurvinder Bajwa and Keryn Lian Department of Materials Science and Engineering, University of Toronto, Toronto, ON, Canada M5S 3E4

# Introduction

One of the common approaches to improve the energy density of electrochemical capacitors (ECs) is to add pseudocapacitive materials to those electrochemical double layer capacitive (EDLC) electrodes. Layer-bylayer (LbL) modification of carbon materials with electrochemical active molecules/species is a simple and effective method to develop such composites [1, 2]. The LbL deposition involves the adsorption of layers of oppositely charged molecules or species via electrostatic interaction. Polyoxometalates (POMs) are low cost materials that exhibit fast and reversible multi-electron transfer reactions [3]. Our objective is to leverage various POM molecules to design and engineer high performance nanocarbon/POM composite electrodes for ECs.

#### **Experimental**

Multi-wall carbon nanotubes (MWCNTs) (Arkema were used as the EDLC substrates. Poly [41)(diallyldimethylammonium chloride) (PDDA) was used the polycation laver (Sigma-Aldrich). as Phosphomolybdic acid (H<sub>3</sub>PMo<sub>12</sub>O<sub>40</sub> or PMo<sub>12</sub>) (Alfa Aeasar) and 10-Molybdo-2-vanadophosphoric acid  $(H_5PMo_{10}V_2O_{40} \text{ or } PMo_{10}V_2)$  were used as the polyanion active layer. PMo<sub>10</sub>V<sub>2</sub> was synthesized in our laboratory [5]. The chemical modification process is shown in Figure 1.

The composite materials were packed into a cavity microelectrode (CME) [6] and characterized using cyclic voltammetry (CV) with an EG&G 273 potentiostat. A 3-electrode cell was utilized, where CME, Pt and Ag/AgCl were used as the working, counter and reference electrodes.

## **Results and Discussion**

Cyclic voltammograms of the bare and the singlelayer PMo<sub>12</sub> coated MWCNTs are shown in Figure 2. At a scan rate of 0.05 V/s, the area specific capacitance of singe-layer PMo12 coated MWCNTs increased by approximately 245% compared to bare MWCNTs (ca. 0.5  $F/cm^2$ ). The increase in capacitance is due to the three reversible and "mirror-imaging" oxidation/reduction peaks of PMo<sub>12</sub>. The CV of a single-layer  $PMo_{10}V_2$ coated MWCNTs is also depicted in Figure 2, which had an area specific capacitance similar to that of single-layer PMo<sub>12</sub> coated MWCNTs. Although both single-layer  $PMo_{12}$  and  $PMo_{12}V_2$  exhibited similar capacitance values,  $PMo_{12}V_2$  coated MWCNTs exhibited a more even distribution of charge within the potential window. This behaviour may be attributed to additional redox reactions. There were a total of four redox peaks for  $PMo_{10}V_2$ , and these peaks were broader compared to the redox peaks of PMo<sub>12</sub>.

The highly reversible oxidation/reduction peaks in  $PMo_{12}$  and  $PMo_{12}V_2$  are suitable for ECs. However, they do not display a rectangular "capacitive" cyclic voltammogram. Thus, utilizing the LbL process, we developed a multi-layer coating structure via repeating the polycation but with different POM layers on MWCNTs. This is demonstrated in Figure 2, where  $PMo_{12}$  was the 1<sup>st</sup> POM (bottom layer) and  $PMo_{10}V_2$  was the 2<sup>nd</sup> (top) POM layer. It is clear that the resulted voltammogram of multi-

layer coated MWCNTs is a combination of its individual single-layer components. Furthermore, the area specific capacitance of this dual-layer coating increased an additional 65% over the single-layer coated MWCNTs. Therefore, this technique is viable for designing and engineering the electrode surfaces to achieve desirable properties through superimposing different types of POM molecules with various properties.



Figure 1: Schematic representation of the LbL process employed in this work.



Figure 2: Cyclic voltammograms of bare MWCNTs in comparison with single-layer  $PMo_{12}$ , single-layer  $PMo_{10}V_2$  and dual-layer coated MWCNTs.

### **Reference:**

[1] T. Akter, K. Hu and K. Lian, "Investigations of multilayer polyoxometalates-modified carbon nanotubes for electrochemical capacitors," *Electrochim.Acta*, vol. 56, no. 14, 5/30, pp. 4966-4971.

[2] G. Bajwa, T. Akter and K. Lian, "Polyoxometalates Modified Carbon Nanotubes for Electrochemical Capacitors," *ECS Trans.*, vol. 35, no. 25, October 11, 2011, pp. 31-37.

[3] D.-. Long, R. Tsunashima and L. Cronin, "Polyoxometalates: Building blocks for functional nanoscale systems," *Angewandte Chemie - International Edition*, vol. 49, no. 10, pp. 1736-1758.

[4] K. Behler, S. Osswald, H. Ye, S. Dimovski and Y. Gogotsi, "Effect of Thermal Treatment on the Structure of Multi-walled Carbon Nanotubes," *J Nanopart Res*, vol. 8, no. 5, pp. 615-625.

[5] G.A. Tsigdinos and C.J. Hallada, "Molybdovanadophosphoric acids and their salts. I. Investigation of methods of preparation and characterization," *Inorg. Chem.*, vol. 3, pp. 437-441.

[6] C. Portet, J. Chmiola, Y. Gogotsi, S. Park and K. Lian, "Electrochemical characterizations of carbon nanomaterials by the cavity microelectrode technique," *Electrochim.Acta*, vol. 53, no. 26, pp. 7675-7680.