Oxygen Reduction Reaction Activity of Nitrogen-Doped Titanium Oxide in Acid Media

Mitsuharu Chisaka,¹ Akimitsu Ishihara,² Kazuaki Suito,² Ken-ichiro Ota² and Hirokazu Muramoto² ¹Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori 036-8561, Japan ²Yokohama National University, 79-5 Tokiwadai,

Hodogaya-ku, Yokohama, Kanagawa 240-8501, Japan ³Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku, Toyohashi, Aichi 441-8580, Japan

Groups 4 and 5 metal-oxide compounds have been regarded as promising candidates for polymer electrolyte fuel cell (PEFC) cathode catalysts because they are insoluble in acid media [1]. One of the synthesis routes, oxidation of metal carbonitrides, produced the highest oxygen reduction reaction (ORR) activity levels among catalysts developed by Ishihara and Ota et al. [2]. The surfaces of these carbonitride-derived catalysts were almost free from nitrogen and it was revealed that oxygen defects were essential for achieving high ORR activity [2]. Recently, using several heat-treatment steps under H₂/Ar (5% H₂) gas, NH₃ gas, or both, Chisaka et al. showed that carbon-supported hafnium oxide with oxygen defects was active toward ORR; however, doping of nitrogen atoms into the oxides was necessary for maximizing the activity [3]. These findings from two different groups suggest that the doping of nitrogen into metal-carbonitride-derived, almost nitrogen-free metal-oxide catalysts should increase their ORR activities. We report here our collaboration results: partially oxidized titanium carbonitride catalysts were doped for the first time with nitrogen by heating them under NH₃ gas to increase their ORR activity.

Titanium carbonitride powders with the elemental composition TiC_{0.82}N_{0.23}O_{0.06} (Japan New Metals Co., Japan) were oxidized by heating at 1173 K for 4 h under a mixed gas containing 2% H₂, 0.5% O₂, and 97.5% N₂. The composition of the resulting catalysts was $TiC_{0.21}N_{0.01}O_{1.88}$. They were further heated at various temperature, T, for 3 h under NH_3 gas. The effects of the T on ORR activity were investigated by obtaining cyclic voltammograms (CVs). The catalyst morphologies, bulk and surface crystal structures, and surface chemical states were evaluated using field-emission transmission electron microscopy (FE-TEM), X-ray diffraction (XRD), Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS) to clarify the key factors affecting ORR activity.

Figure 1 shows FE-TEM images of assynthesized TiC_{0.21}N_{0.01}O_{1.88}. Black plates and small gray spherical particles aggregated between the plates are observed in Fig. 1(i), indicating that at least two different phases were present in the $TiC_{0.21}N_{0.01}O_{1.88}$ catalyst. The size of the black plates varied between ~20 and 200 nm. Energy-dispersive X-ray spectroscopy analyses revealed that titanium atoms were present and absent in the black plates and gray aggregated particles, respectively. Only carbon atoms were observed in the gray particles. A highmagnification FE-TEM image of the black plates is shown in Fig. 1(ii). They were well crystallized and the lattice distance was 3.2 Å.

Figure 2 shows the XRD patterns of assynthesized TiC_{0.21}N_{0.01}O_{1.88} and TiC_{0.21}N_{0.01}O_{1.88} heattreated at six T values, ranging from 773 to 1273 K under NH₃ gas. A single tetragonal rutile-TiO₂ phase was observed for as-synthesized $TiC_{0.21}N_{0.01}O_{1.88}$ and $TiC_{0.21}N_{0.01}O_{1.88}$ NH₃-treated at $T \le 873$ K. The lattice

distance calculated from the strongest peak, the rutile (110) plane of the XRD pattern of the as-synthesized $TiC_{0.21}N_{0.01}O_{1.88}$, was 3.25 Å, which agrees well with the results obtained from the black plates in the FE-TEM image shown in Fig. 1(ii). A mixture of the tetragonal rutile-TiO₂ phase and a cubic TiN phase was observed in TiC_{0.21}N_{0.01}O_{1.88} catalysts NH₃-treated at 873 K $\leq T \leq$ 1073 K, whereas those NH₃-treated at $T \ge 1173$ K exhibited only the cubic TiN phase.

Figure 3 shows the ORR mass activity versus potential $[(I_0 - I_N)m_T^{-1} - E]$ curves for as-synthesized $TiC_{0.21}N_{0.01}O_{1.88}$ and $TiC_{0.21}N_{0.01}O_{1.88}$ heat-treated at six different T values under NH3 gas. The as-synthesized $\text{TiC}_{0.21}\text{N}_{0.01}\text{O}_{1.88}$ showed a clear $(I_{\text{O}} - I_{\text{N}})m_{\text{T}}^{-1}$ at a high E of ~ 0.8 V. The activity increased with increasing T up to 1073 K, but decreased with further increases in T. Raman spectra and XPS analyses revealed that the improved activity observed in the T range of 873–1073 K shown in Fig. 3(c)–(e) was not attributed to the electronic conductivity of graphitic layers, but to the oxygen defects and/or doped nitrogen in rutile-TiO₂ lattice.

were performed in 0.1 M H_2SO_4 at 5 mV s⁻¹.

treated at six different T values shown in Figure 2. The scans of (b) 773 K, (c) 873 K, (d) 973 K, (e) 1073 K, (f) 1173 K, and (g) 1273 K, for 3 h.

References

1. A. Ishihara, Y. Ohgi, K. Matsuzawa, S. Mitsushima,

and K. Ota, Electrochim. Acta, 55, 8005 (2010). 2. K. Ota, Y. Ohgi, K. D. Nam, K. Matsuzawa, S

Mitsushima, and A. Ishihara, J. Power Sources, 196, 5256 (2010)

3. M. Chisaka, Y. Suzuki, T. Iijima, Y. Ishihara, R. Inada, and Y. Sakurai, ECS Electrochem. Lett., 1, F4 (2012).

Acknowledgments

We gratefully acknowledge Japan New Metal Co. for supplying titanium carbonitride powders.