

Measurement of Oxygen Gas Transport Resistance in Cathode Catalyst Layers of PEFC

H. Yasuda, K. Kobayashi, A. Daimaru, M. Hori

Fuel Cell Research Center, Daido University
10-3 Takiharu-cho, Minami-ku, Nagoya 457-8530, Japan

Introduction

Polymer electrolyte fuel cells (PEFCs) are a promising power sources for automotive use. For the commercialization, cost reduction is one of the most important issues. In order to reduce cost, the Pt-loading of a membrane electrode assembly (MEA) should be reduced. Many studies for this purpose have been done. As a part of such studies, in-situ analytical methods for evaluating oxygen transport properties have been developed using limiting current measurements¹⁾²⁾³⁾. It has been found that reactant gas transport resistance in CLs (R_{other}) was mainly consisted of two parts, Knudsen diffusion resistance (R_k) and diffusion resistance around Pt particles (R_{Pt}). And it has been found that the diffusion resistance around Pt catalyst R_{Pt} was significantly increased when Pt loading in CLs was reduced²⁾.

In this study, the oxygen diffusion resistances in CLs are measured not only the limiting current measurement method but also by the oxygen-nitrogen mutual diffusion method⁴⁾. The results are analyzed using the difference of oxygen diffusion pass in CLs with these two measurement methods.

Experimental

Table 1 shows the specifications of the MEAs used in this study. The MEA samples with an active area of 1cm^2 were fabricated by coating CLs consisting of catalysis powders (Pt/C) and Nafion[®] ionomer onto the perfluorosulfonated polymer membrane (Nafion[®] NR212). Pt-loadings of the samples for the working electrode were $0.50, 0.35, 0.20, 0.12, 0.07\text{ mg cm}^{-2}$ respectively. In order to evaluate the reactant gas transport resistance in the CLs, limiting currents were measured in nitrogen balance gases. R_k and R_{Pt} were determined with the above-mentioned method and were compared²⁾³⁾.

Results and discussions

R_{other} determined by limiting current measurement method is shown in Fig.1. In order to estimate R_k and R_{Pt} , Equation (1) was introduced with the analogy of porous electrode model and value was determined.

$$R_{\text{CL}} = \sqrt{R_k R_{\text{pt}}} \coth \sqrt{\frac{R_k}{R_{\text{pt}}} L} \quad (1)$$

R_{CL} : Gas Diffusion resistance in CLs

R_k : Knudsen diffusion resistance in CLs

R_{pt} : Diffusion resistance around Pt catalyst

L : Thickness of CLs

By changing L and measuring R_{other} , the values of R_{pt} and R_k were determined (Fig. 2).

Another oxygen diffusion resistance measurement method which called oxygen-nitrogen mutual diffusion method have been proposed.⁴⁾

The relation of the limiting current measurement

method and the oxygen-nitrogen mutual diffusion method is represented in equation (2)

$$R'_{\text{CL}} = R_k \times L \quad (2)$$

The results are analyzed by this equation.

Table 1.MEA specification

	Counter Electrode	Working Electrode
Catalyst	Pt/C (TEC10E50E, TKK)	
Ionomer	Nafion [®] (D2020, Dupont)	
Pt loading / mg cm^{-2}	0.50, 0.35, 0.20, 0.12, 0.07	
Ionomer /Carbon Ratio	0.7, 1.0, 1.3	
Active Area / cm^2	1.0	
Membrane	Nafion [®] (NR212-CS, Dupont)	
GDL	TGP H060, Toray (without MPL)	

Fig.1 Rother of ORR in the CLs

Fig.2 I/C vs Diffusion Resistance Parameters

Acknowledgement

This research was performed under a grant from the Cell Evaluation Project of the New Energy and Industrial Technology Development Organization (NEDO).

References

1. T.Mashio, A.Ohma, S.Yamamoto and K.Shinohara, *ECS Transactions*, **11**(1) 529 (2007).
2. K.Sakai, K.Sato, T.Mashio, A.Ohma, K.Yamaguchi and K.Shinohara, *ECS Transactions*, **25**(1) 1193 (2009).
3. N.Nonoyama, S.Okazaki, A.Z. Weber, Y.Ikogi, and T.Yoshida, *J. Electrochem.Soc.*, **158**, B416 (2011).
4. K.Yokoyama, J.Ooyama, T.Tokunaga, and N.Kubo *The 52nd Battery symposium in Japan* 392 (2011)