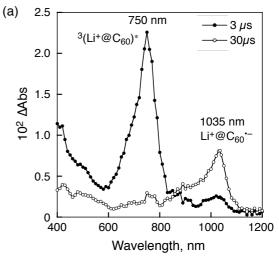
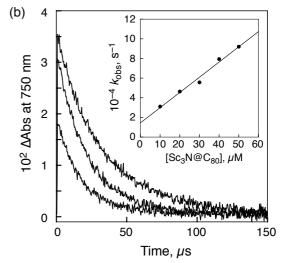
Photoinduced Electron Transfer from Sc₃N@C₈₀ to Li⁺@C₆₀


Yuki Kawashima,^a Kei Ohkubo,^a and Shunichi Fukuzumi^{a,b}

 ^a Department of Material and Life Science, Graduate School of Engineering, Osaka University, ALCA, Japan Science and Technology Agency, Suita, Osaka 565-0871, Japan
 ^b Department of Bioinspired Science, Ewha Womans University, Seoul, 120-750, Korea


> ykawashima@chem.eng.osaka-u.ac.jp, fukuzumi@chem.eng.osaka-u.ac.jp

Fullerene, which has a highly delocalized threedimensional π -system, is suitable for efficient electron acceptor because the uptake or release of electrons results in minimal structural and solvation changes upon electron transfer.[1] Therefore, fullerene has been employed as an electron acceptor for the donor-acceptor charge separation systems. Because C_{60} is essentially spherical, it is an ideal molecule to examine the electron-transfer reactions involving C₆₀ in light of the Marcus theory of electron transfer.[2] Endohedral fullerenes have recently gained increased attention with regard to the potential applicability due to the specific reactivities, being spherical molecules $(I_h$ -symmetry) like fullerene.[3] For instance, lithium ion encapsulated fullerene, $Li^+@C_{60}$ has I_h -symmetric C_{60} cage. It shows enhanced electron acceptability than pristine C₆₀.[4] On the other hand, trimetal nitride fullerenes, $M_3N@I_h-C_{80}$ also have I_h -symmetric C_{80} fullerene cage, which is stabilized by encapsulating M₃N cluster to donates six electrons to C₈₀ cage.[5] However, there has been no report of electron-transfer reactions between an I_h symmetric fullerene to other fullerenes. We report herein the electron-transfer reaction from $Sc_3N@I_h-C_{80}$ to $Li^+@I_h-C_{80}$ C₆₀.

The one-electron reduction potential of triplet excited state of $\text{Li}^+@\text{C}_{60}$ [³($\text{Li}^+@\text{C}_{60}$)^{*}] is determined to be 1.67 V vs SCE in benzonitrile (PhCN) from the one-electron reduction potential of $Li^+@C_{60}$ (0.14 V) and the triplet excited energy (1.53 eV).[4] The one-electron oxidation potential of $Sc_3N@C_{80}$ as an electron donor is determined to be 1.09 V, which is more positive than the one-electron reduction potential of ${}^{3}(\text{Li}^{+}@\text{C}_{60})^{*}$, when the driving force of electron transfer from $Sc_3N@C_{80}$ to ${}^{3}(Li^{+}@C_{60})^{*}$ is highly positive ($-\Delta G_{et} = 0.58$ eV). Upon nanosecond laser excitation at 355 nm of a PhCN solution of Li⁺@C₆₀, a transient triplet-triplet (T-T) absorption spectrum is observed at $\lambda_{\text{max}} = 750$ nm. The T-T absorbance decays obeying first-order kinetics. The addition of Sc₃N@C₈₀ to a solution of Li⁺@C₆₀ in PhCN results in electron transfer from $Sc_3N@C_{80}$ to ${}^{3}(Li^+@C_{60})^*$ to produce $Sc_3N@C_{80}^{\bullet+}$ and Li⁺@C₆₀ $(\lambda_{max} = 1035 \text{ nm } [4])$. The absorption spectrum of ${}^{3}(\text{Li}^{+}@\text{C}_{60})^{*}$ observed at 3 μ s after laser excitation is converted to the spectrum of radical ion pair at 30 μ s in Figure 1. The second-order rate constant of electron transfer from $Sc_3N@C_{80}$ to ${}^{3}(Li^{+}@C_{60})^{*}$ was determined to be $k_{\rm et} = 1.5 \times 10^9 \,{\rm M}^{-1} {\rm s}^{-1}$ from dependence of decay rate

Figure 1. Transient absorption spectra observed in photoinduced electron transfer from $Sc_3N@C_{80}$ to $Li^+@C_{60}$ taken at 3 (•) and 30 μ s (•) after laser excitation at 355 nm in deaerated PhCN at 298 K.

Figure 2. Time profiles at 750 nm of Li⁺@C₆₀ (50 μ M) in the presence of various concentration of Sc₃N@C₈₀. Inset: Plot of observed decay rate constants vs the concentration of Sc₃N@C₈₀.

constant of ${}^{3}(\text{Li}^{+}@\text{C}_{60})^{*}$ on the Sc₃N@C₈₀ concentration (inset of Figure 2). The decay of radical ion pair obeyed second-order kinetics monitored at 1035 nm. The rate constant was determined to be $k_{\text{bet}} = 5.6 \times 10^{9} \text{ M}^{-1} \text{ s}^{-1}$ which is close to be the diffusion limited value in PhCN.

References

- Fukuzumi, S.; Guldi, D. M. in *Electron Transfer in Chemistry*, Balzani, V., Ed.: Wiley-VCH, Weinheim, 2001, Vol. 2, pp. 270-337.
- [2] (a) Marcus, R. A. Annu. Rev. Phys. Chem. 1964, 15, 155-196.
 (b) Marcus, R. A. Angew. Chem., Int. Ed. Engl. 1993, 32, 1111-1121
- [3] Chemistry of Nanocarbons, Akasaka, T., Wuldi, F., Nagase, S., Eds.: Wiley, London, 2010.
- [4] Kawashima, Y; Ohkubo, K.; Fukuzumi, S. J. Phys. Chem. A 2012, 116, 8942-8948.
- [5] Rudolf, M.; Wolfrum, S.; Guldi, D. M.; Feng, L.; Tsuchiya, T.; Akasaka, T.; Echegoyen, L. *Chem.-Eur. J.* 2012, 18, 5136-5148.