Electrochemical Methane Activation and Conversion to Oxygenates at Room Temperature

Neil Spinner and William E. Mustain

Department of Chemical and Biomolecular Engineering University of Connecticut Storrs, CT 06268

Methane (CH₄), a plentiful, high energy natural resource and the primary component of natural gas, is inherently difficult to activate due to its lack of polarity and chemical inertness. As a result, high temperatures are typically employed (~650°C or higher) in fuel cells or reformers to convert CH₄ to syngas and/or other hydrocarbon products [1-3]. However, the drawbacks with such high temperature systems include the cost of high quality heat, stability concerns, and catalyst poisoning and deactivation. As a result, lower temperature alternatives have started to receive increased attention in recent years.

In separate studies, transition metal oxide complexes and Fe-zeolite catalysts were reported to exhibit catalytic activity for CH₄ activation at temperatures at or below 180° C [4,5]. While these heterogeneous chemical systems represent a significant advance, there remains an absence of reports concerning CH₄ activation electrochemically at low temperature. Electrochemical reactors offer distinct advantages over purely chemical ones: i) they are not limited by thermochemical cycles and therefore have a higher theoretical achievable efficiency; ii) the surface free energy can be directly controlled through the electrode potential; and iii) separate, tailorable electrodes allow for non-direct reaction and optimization [6].

Using а bifunctional nickel oxide-zirconia electrocatalyst, CH4 was activated and oxidized with carbonate anions (CO_3^{2}) as a source for oxygen donation and charge transfer [7]. Product characterization using Mass Spectrometry (MS), Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR), and Proton Nuclear Magnetic Resonance Spectroscopy (¹H-NMR) revealed a myriad of products. Figure 1 shows the products formed in a batch cell collected at 1.8V electrode potential using ¹H-NMR. In addition to those shown in Fig. 1, formaldehyde and carbon monoxide were also detected in separate electrochemical cells.

Figure 2 shows the proposed reaction mechanisms for the formation of methanol (CH₃OH) from CH₄ and CO₃²⁻, and the formation of C-C bonds through C=O bond resonance. This abstraction and donation of oxygen using CO_3^{2-} for electrochemical oxidation is a unique approach and could open up new avenues of low temperature electrochemical CH₄ activation reactors. The effects of different in cell constructions and applied potentials on the

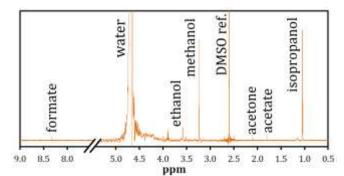


Figure $1 - {}^{1}$ H-NMR spectrum for aqueous batch cell collected at 1.8V electrode potential.

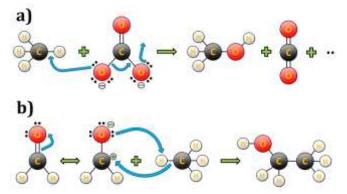


Figure 2 – Proposed reaction mechanisms for a) CH_3OH formation from CH_4 and CO_3^{2-} ; and b) C-C bond synthesis through C=O bond resonance.

product profile observed through MS, ATR-FTIR, and ¹H-NMR will also be investigated and discussed.

¹H-NMR data shown in this work was collected by Dr. John Flake at Louisiana State University, and we would like to thank him for his collaboration.

References:

- 1. D. Hickman, L. Schmidt, Science, 259 (1993) 343.
- 2. W. Maier, Angew. Chem. Int. Ed., 50 (2011) 4265.
- 3. T. Koerts, P. Leclercq, R. van Santen, J. Am. Chem. Soc., **114** (1992) 7272.
- 4. R. Periana, O. Mironov, D. Taube, G. Bhalla, C. Jones, *Science*, **301** (2003) 814.
- 5. C. Hammond et al., Angew. Chem. Int. Ed., 51 (2012) 5129.
- N. Spinner, J. Vega, W. Mustain, *Catal. Sci. Technol.*, 2 (2012) 19.
- N. Spinner, W. Mustain, J. Electrochem. Soc., 159 (2012) E187.