Functionalization of Endohedral Metallofullerene Lu₃N@C₈₀ with Organic Electron Acceptor

<u>Lai Feng</u>, ^{1,2} Marc Rudolf, ³ Silke Wolfrum, ³ Zdenek Slanina, ² Takeshi Akasaka, ² Dirk M. Guldi ³

¹ Jiangsu Key Laboratory of Thin Films and School of Energy, Soochow University, Suzhou 215006, China, ²Tsukuba Advanced Research Alliance, University of Tsukuba, Ibaraki 305-8577, Japan, ³Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany E-mail: fenglai@suda.edu.cn

f-mail: fenglai@suda.edu.c Tel: +86-512-6522-3650

Fullerenes C_{60} and C_{70} have been widely used as electron acceptors for construction of various photosynthesis and photovoltaic systems, owing to their favorable reduction potentials and small reorganization energies in photo-induced reactions. However, the electron-donating properties of C_{60} and C_{70} are very poor because of their high oxidation potentials. Previous studies revealed that the photo-induced electron donation of C_{60} is unfavorable unless very strong electron acceptors or scandium ions are employed. Such limitation might impede using C_{60} as a widely applicable electron donor.

 $Lu_3N@C_{80}$ is one of well studied endohedral metallofullerenes. Its first oxidation potential is c.a. 600 mV lower than that of C_{60} , suggesting its better electron-donating property as compared with C_{60} or its derivatives. The present work is focusing on developing a synthetic way toward novel conjugates composed of $Lu_3N@C_{80}$ and organic electron acceptor. The structures, redox properties and photophysical properties of these conjugates have been fully characterized. Importantly, the electron-donating property of $Lu_3N@C_{80}$ has been experimentally confirmed and the related geometry effect is discussed as well.