

**Electrochemical Surface-Hydrogenation and
Characterization of Nitrogen-doped N-Type
Nanocrystalline Diamond Film**

Ying Xiong*, Bing Wang, Jing Li, Rufang Peng, Bo

Jin, Hongbo Li

State Key Laboratory Cultivation Base for Nonmetal

Composites and Functional Materials, Southwest

University of Science and Technology

Mianyang, 621010 P. R. China

In this article, nitrogen-doped N-type nanocrystalline diamond thin film was successfully hydrogenated in surface via a mild electrochemical cathode polarization in the acidic solution. The change of surface- and micro-structure of nitrogen-doped N-type nanocrystalline diamond thin film before and after the treatment of electrochemical cathode polarization were carefully investigated by X-ray photoelectron spectrum (XPS), capacitance-voltage analysis, Raman spectrum and scanning electron microscopy (SEM). These results suggested that this electrochemical cathode polarization technique could not only obtain high-density hydrogen-terminated surface, but also had not significant effect on micro-structure of diamond thin film, especially on sp^2 -hybridized carbon located in grain boundary, indicating that this technique is an effective and undamaged surface-hydrogenation method for nitrogen-doped N-type nanocrystalline diamond thin film.