Triplet exciton dynamics in single-wall carbon nanotubes

Florian Späth¹, Dominik Stich¹, Daniel Schilling¹, Hannes Kraus², Andreas Sperlich², Vladimir Dyakonov^{2,3} and Tobias Hertel¹

¹Institute of Physical and Theoretical Chemistry, Julius-Maximilian University Würzburg Am Hubland, 97074 Würzburg, Germany ²Institute of Physics, Julius-Maximilian University Würzburg Am Hubland, 97074 Würzburg, Germany ³Bavarian Center for Applied Energy Research e.V. Am Hubland, 97074 Würzburg, Germany

We present pump-probe, time-correlated single photon counting and spin sensitive photoluminescence studies of semiconducting single-wall carbon nanotubes (SWNTs) in aqueous and organic solvent environments. The studies allow clear identification of signatures from triplet-triplet interactions and thereby provide access to studying triplet exciton dynamics in semiconducting SWNTs. The experiments allow for the first time the determination of triplet lifetimes which are here found to be (60±30) μ s. The triplet diffusion constant on the other hand is determined to be on the order of 10 cm² s⁻¹ which is similar to that found for singlet excitons. Moreover we present evidence for the contribution of free charge carrier dynamics to pump-probe transients.