Non-Condon and Double Resonance Raman Behaviors in Carbon Nanotubes Enriched in a Single Chirality

Stephen K. Doorn¹, Hagen Telg¹, Juan G. Duque¹, Janina Maultzsch², Helen Tu³, Ming Zheng³

¹Los Alamos National Laboratory, Los Alamos, NM 87545 ²Technische Universitat Berlin ³NIST, Gaithersburg, MD 20899

Access to carbon nanotube samples enriched in single chiralities allows the observation of new photophysical behaviors obscured or difficult to demonstrate in mixedchirality ensembles. Recent examples include the observation of strongly asymmetric G-band excitation profiles resulting from non-Condon effects¹ and the unambiguous demonstration of Raman interference effects.² We present here a study of the E_{ii} dependence in non-Condon behavior with excitations from E_{11} thru E_{44} for both RBM and G modes. Additionally, the complex response expected for the CNT 2-D mode has not yet been clearly defined because of similar limitations. We present results on the dispersive and resonance behaviors of the 2-D mode obtained from samples enriched in a single chirality. The response will be discussed in the context of the interplay of dispersive effects and resonance with the $E_{11} \mbox{ and } E_{22} \mbox{ transitions.}$ The results will be compared to simulations that include all relevant electronic and phonon bands tied to the double-resonance process.

J.G. Duque, et. al., ACS Nano, 5, 5233 (2011).
J. G. Duque, et. al., Phys. Rev. Lett., 108, 117404 (2012).