

**Conformationally Constrained Functional Peptide
Monolayers for the Controlled Display of Bioactive
Carbohydrate Ligands**

Justin M. Kaplan,^a Jing Shang,^b Pierangelo Gobbo,^c
Sabrina Antonello,^c Vijay Chatare,^a Daniel M. Ratner,^b
Rodrigo B. Andrade,^a and Flavio Maran^{a,c}

^a Department of Chemistry, Temple University,
Philadelphia, PA

^b Department of Bioengineering, University of
Washington, Seattle, WA

^c Department of Chemistry, University of Padova,
Padova, Italy

Carbohydrate-mediated biomolecular interactions play a variety of roles in biological processes, including cell-cell signaling, host-pathogen interactions and tumor progression. The display of carbohydrate ligands on cell surfaces directly affects the binding strength and specificity of carbohydrates to other biomolecules. To interrogate these interactions, a biosensing platform with stable and tunable bioactivity is desired. Here we show that purposely-synthesized thiolated peptides, based on the highly conformationally constrained helicogenic α -aminoisobutyric acid (Aib) residue, form very strong and stable self-assembled monolayers on gold. Stability is realized by the formation of an extensive network of hydrogen bonds connecting neighboring peptides that retain their 3_{10} -helical structure. Based on these findings, we decorated the monolayer with increasingly larger amounts of a mannose-functionalized Aib-peptide, and surface-plasmon resonance revealed an outstanding performance of these mixed monolayers toward biorecognition of the lectin concanavalin A.