

Toxicity and fate of Gadonanotubes after intravenous administration in mice

Emna Dhemaied,¹ Catherine Sébrié,¹ Michael L. Matson,²
Tarek Baati,³ Lon J. Wilson,² Manef Abderrabba,⁴ Luc
Darrasse,¹ Fathi Moussa³

¹ CNRS UMR 8081 IR4M, Université Paris Sud; ² Rice University; ³ LETIAM, GCAPS, IUT d'Orsay, Université Paris Sud, ⁴ IPEST, Université de Carthage, Tunisie
IUT d'Orsay, Université Paris Sud, Plateau de Moulon, 91400 Orsay, France

Gadonanotubes, superparamagnetic Gd³⁺-ion clusters (1 + 5 nm) confined within ultrashort (20-80 nm) single-walled carbon nanotube capsules, have been shown to be high-performance T1-weighted contrast agents for magnetic resonance imaging (MRI).

At 1.5 T, 37 °C, and pH 6.5, the r1 relaxivity (ca. 180 mM⁻¹ s⁻¹ per Gd³⁺ ion) of gadonanotubes is 40 times greater than any current Gd³⁺ ion-based clinical agent.¹

Gadonanotubes are also ultrasensitive pH-smart probes with their r1/pH response from pH 7.0-7.4 being an order of magnitude greater than for any other MR contrast agent.¹ However, the *in vivo* behavior of these clinical contrast agent candidate remain unknown.

Here, we shall report the preliminary results of efficacy, acute toxicity, biodistribution, and elimination of gadonanotubes in mice after intravenous administration.

¹ Keith B. Hartman. Nano Letters 2008 ; 8 (2) : 415-419