Delithiation of LiFePO_4 by chemical oxidation reaction using H_2O_2 and $K_2S_2O_8$

Fatima Sobh¹, Guoxian Liang², Steen Brian Schougaard¹

¹ Université du Québec à Montréal, 2101 Jeanne-Mance, Montréal, Québec, H2X 2J6, Canada

² Phostech Lithium, Inc., 280 avenue Liberté, Candiac, J5R 6X1, Canada

Triphylite LiFePO₄ is presently used as an active material in lithium batteries because of its thermal and electrochemical stability, high specific capacity, low cost and relative safety and non-toxicity. The low electronic conductivity and slow diffusion of lithium can prevent LiFePO₄ from reaching its theoretical specific capacity of 170 mAh/g^[1]. The structure of LiFePO₄ is orthorhombic olivine; however, once the lithium is extracted, the structure becomes orthorhombic heterosite. The extraction of lithium can be accomplished by either electrochemical or chemical oxidation. In this work, chemical oxidation of LiFePO₄ was performed to study its oxidation kinetics and its particle surface properties. LiFePO₄ was delithiated for two hours in a mixture of oxidants (H₂O₂ or K₂S₂O₈), water, and acetic acid^[2]. The Li_(1-x)FePO₄ obtained was analyzed by atomic emission spectroscopy (ICP-OES), x-ray diffraction (XRD), (FT-IR-ATR) and Raman infrared spectroscopy spectroscopy. Delithiated LiFePO₄ can be used as an oxidant in industrial processes for LiFePO4 coated by conductive polymers, as well as a cathode in lithium batteries, for anodes the a synthesized in the charged state.

Fig. 1: XRD of LiFePO_4 completely delithiated with H_2O_2 and $K_2S_2O_8$

References:

[1] A. K. Padhi, K. S. Nanjundaswamy and J. B. Goodenough, *Journal of The Electrochemical Society* 1997, *144*, 1188-1194.

[2] a) J. L. Dodd, R. Yazami and B. Fultz, *Electrochemical and Solid-State Letters* 2006, 9, A151-A155; b) D. Lepage, C. Michot, G. Liang, M. Gauthier and S. B. Schougaard, *Angewandte Chemie International Edition* 2011, *50*, 6884-6887.