Reduction of Irreversible Capacity Loss via V2O5 Surface Coating Lithium Rich Cathode Materials

Qiangfeng Xiao¹, Mei Cai²,

¹Optimal CAE Inc, 14492 N Sheldon Road, Plymouth, MI 48170 ²General Motors Global R&D Center, 30500 Mound Road, Warren, MI, 48090

Compared to conventional cathode materials (e.g., LiCoO₂, LiMn₂O₄, $Li[Mn_{1/3}Ni_{1/3}Co_{1/3}]O_2$, the lithium rich layered $(Li_2MnO_3)_x(LiMO_2)_y$ (M=Mn, Ni, Co) materials have attracted great interest due to its higher discharge capacity over 250 mAh/g. Nevertheless, these materials demonstrate huge irreversible capacity loss of 60-120 mAh/g in the first cycle because the extraction of Li₂O in the first cycle results in a lower number of Li ion sites in the subsequent cycles. This work has investigated the effect of vanadium oxide (V_2O_5) sol-gel coatings on the cycleability of lithium rich cathode materials for lithium ion battery at a high-charge cut-off voltage. The process starts from the impregnation of envia cathode powder in vanadium tri-Isopropoxide oxide THF solution, followed by evaporation, hydrolyzation in vapour and annealing. The crystal structure and morphology of the samples are examined by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM). The results indicated V_2O_5 take an amorphous form with the annealing temperature below 300 °C. When the annealing temperature increases to 500 °C, Li₃VO₄ phase has been formed. The electrochemical performance, including coulombic efficiency and cycleability, of V_2O_5 coated cathode materials was improved as compared to pristine materials.

Figure 1 (a) TEM image and (b) high resolution TEM image showing amorphous V_2O_5 on the crystalline lithium rich cathode. (c)The first charge/discharge curve of pristine materials and (d) that of V_2O_5 coated ones showing V_2O_5 coating effectively reduces the irreversible capacity loss.