Effect of Nano-fillers on the Conductivity and Structural Properties of EMIHSO₄-based Polymer Electrolytes

S. Ketabi and K. Lian

Department of Materials Science and Engineering University of Toronto, Toronto, Canada

A non-fluorinated ionic liquid (IL)-polymer electrolyte has been developed for flexible electrochemical capacitors. Thermal and structural characterizations of this polymer electrolyte revealed a positive effect of IL on reducing the crystallinity of the polymer electrolyte [1]. To further enhance its performance at ambient temperature, we investigated the effect of inorganic nano-fillers on the ionic conductivity and structure stability of the polymer-IL electrolytes.

1-Ethyl-3-methylimidazolium hydrogensulfate (EMIHSO₄) was integrated with polyethylene oxide (PEO) to form PEO-EMIHSO₄ electrolytes. The ionic liquid composition is reported as weight ratio with respect to the polymer, referred as (PEO:EMIHSO₄). Nanosized silica (SiO₂, amorphous) and titania (TiO₂, anatase) fillers in 3 wt% of the total polymer and IL weight were dispersed in PEO-EMIHSO4 mixture. The solution-cast PEO-EMIHSO₄ thin films were sandwiched between stainless steel electrodes for electrochemical characterization. Differential scanning calorimetry (DSC), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR) were used for thermal and structural analyses.

The effect of fillers on the ionic conductivity was investigated for PEO-EMIHSO₄ at 1:3 composition. SiO₂ and TiO₂ fillers showed a different impact on the ionic conductivity of PEO-EMIHSO4. Figure 1 shows the dependence of ionic conductivity temperature for filler-free PEO-EMIHSO₄ PEO-EMIHSO₄ and electrolytes containing 3 wt% SiO₂ and TiO₂. The addition of SiO₂ increased the ionic conductivity of PEO-SiO₂-EMIHSO₄ more than 2-fold and reached 1.82 mS/cm, comparable to that of liquid EMIHSO₄ at room temperature [1]. On the other hand, the trend of conductivity for PEO-TiO2-EMIHSO4 electrolytes remained almost the same as that of filler-free electrolyte. Figure 1 also shows the activation energy of ionic conduction for temperatures below and above the melting point of crystalline phase of PEO. At low temperatures, the higher activation energy of PEO-TiO2-EMIHSO4 implies that the ionic conduction was hindered compared to that of filler-free electrolyte. In the case of PEO-SiO₂-EMIHSO₄, the increase in ionic conductivity throughout the entire temperature range suggests that the addition of SiO₂ was not only effective in retaining the amorphous phase at lower temperatures but also improved the ionic conduction. The DSC thermograms of all three PEO-EMIHSO₄ electrolytes are shown in Figure 2. With the addition of SiO₂ filler, the crystallinity of PEO-SiO₂-EMIHSO₄ decreased slightly compared to that of filler-free electrolyte, and no obvious $T_{\rm g}$ was found. In contrast, the crystallinity of the electrolyte with TiO_2 increased by ca. 10%. The effect of fillers on the conductivity of PEO-EMIHSO4 can be attributed to the difference in their structure.

Thermal and structural characterizations support the notion that the crystalline ${\rm TiO}_2$ may act as a

nucleation center for crystallinity [2], whereas the amorphous SiO_2 can restrain the recrystallization of polymer in PEO–EMIHSO₄ system. Detailed analyses on the effect of these nano-fillers on ionic conduction and polymer structure will be discussed.

References:

- [1] S. Ketabi, K. Lian, Solid State Ionics, 227, 86, 2012.
- [2] B.-K. Choi, Y.-W. Kim, K.-H. Shin, J. Power Sources, 68, 357, 1997.

Figure 1. Temperature dependence of ionic conductivity for PEO–EMIHSO₄ (1:3) electrolytes: filler-free, with 3wt% SiO₂ and TiO₂.

Figure 2. DSC thermograms for PEO–EMIHSO₄ (1:3) electrolytes: filler-free, with 3wt% SiO₂ and TiO₂.