Fabrication of Paper-based Screen-printed

Chromatographic Electrochemical Biosensor

Tasuku YAMAGUCHI, Yoshinao HOSHI, Isao SHITANDA, Masayuki ITAGAKI

Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science 2641, Yamazaki, Noda, Chiba 278-8510, Japan

E-mail address: shitanda@rs.noda.tus.ac.jp (I. Shitanda)

There has been a considerable recent interest in paper based biosensors, owing to low price, good flexiblity. For example, Nie et al. fabricated microfluidic paper-based electrochemical devices that are capable of quantifying the concentrations of various analytes in aqueous solutions, including biological fluids such as urine, sermu and blood¹. Vella et al. fabricated microfluidic paperbased device that measures two enzymatic markers of live function and total serum protein².

Screen-printing technique has been widely applied to fabrication of electrochemical devices such as dyesensitized solar cells³, biosensors⁴⁻⁶ and corrosion sensor⁷ since it has following merits: (a) drawing precise pattern of μ m order, (b) a wide variety of inks, (c) high reproducibility, and (d) low cost.

In this study, we fabricated on a paper-based chromatographic electrochemical biosensor by screen printing. Figure 1 shows schematic illustration of the paper-based chromatographic electrochemical biosensor. A resist ink, a carbon ink, a silver ink, and a silver/silver chloride ink on a paper by using a screen-printing machine (NEWLONG SEIMITSU KOGYO, LS-150TV).

Fig. 1. Photograph and schematic illustration of the paper-based chromatographic electrochemical biosensor.

TTF (tetrathiafulvalene) and glucose oxidase (GOD) were immobilized on the carbon electrode by casting the solutions on the paper. Figure 2 shows the schematic illustration of the experimental set-up. When the electrochemical measurements were performed, only the bottom of the papar was immersed in electrolyte solution.

Fig. 2. The schematic illustration of the experimental set-up.

Figure 3 shows the cyclic voltammetry of the biosensor in an 66.6 mM phosphate buffer solution containing 0 and 0.5 M glucose at 25 °C. Catalytic CV was obtained under 0.5 M glucose solution, indicating that the GOD and TTF immobilized in the paper works as an electrocatalytic system of the oxidation of glucose.

Figure 4 shows the calibration curve of the paper-based biosensor for glucose. The linear relation was observed between 0.001-0.1 M with good reproducibility.

Fig. 3. The cyclic voltammogram of the biosensors.

Fig. 4. The calibration curve of the paper-based biosensor for glucose. i means the peak current value without the background current value.

References

- Z. Nie, C. A. Nijhuis, J. Gong, X. Chen, E. Kumachev, R. W. Martinez, M. Narovlyansky and G. M. Whitesides, *Lab on Chip*, 4, 477 (2010).
- S. J. Vella, P. Beattie, R. Cademartiri, A. Laromaine, A. W. Martinez, S. T. Phillips, K. A. Mirica, and G. M. Whitesides, *Analytical chemistry*, 84, 2883 (2012).
- 3. M. Itagaki, Y. Nakano, I. Shitanda, K. Watanabe, *Electrochim. Acta*, **56**, 7975 (2011).
- 4. I. Shitanda, S. Takamatsu, K. Watanabe, M. Itagaki, *Electrochim. Acta*, **54**, 4933 (2009).
- 5. F. Ricci, A. Amine, G. Palleschi, D. Moscone, *Biosens. Bioelectron*, **18**, 165 (2003).
- 6. Y. H. Lin, F. Lu, J. Wang, *Electroanalysis*, **16**,145 (2004).
- 7. I. Shitanda, A. Okumura, M. Itagaki, K. Watanabe, *Sens. Actu. B-Chem*, **139**, 292 (2009).