High performance of Corrole Derivatives as a Potential Non-precious Catalyst for Proton Exchange Membrane Fuel Cell

Hsin-Chih Huang¹, Chen-Hao Wang^{1*}, Sun-Tang Chang¹ Hsin-Cheng Hsu¹, Li-Chyong Chen³, Kuei-Hsien Chen², ¹Department of Materials Science and Engineering,

National Taiwan University of Science and Technology,

Taipei, 10607, Taiwan

² Institute of Atomic and Molecular Science, Academia

Sinica, Taipei, 10617, Taiwan

³ Center for Condensed Matter Sciences, National Taiwan

University, Taipei, 10617, Taiwan

*E-mail: chwang@mail.ntust.edu.tw

This study attempts to synthesize corrole derivatives as non-precious catalyst to replace the platinum catalysts for proton exchange membrane fuel cell. It demonstrates the carbon black-supported pyrolyzed M-corrole (py-Fecorrole/C and py-Co-corrole/C) catalyst of the oxygen reduction reaction (ORR) in a PEMFC cathode, with high catalytic performance.

Figure 1 shows that py-Fe-corrole/C and py-Cocorrole/C exhibit the optimized ORR activity after the pyrolysis, which the electron transfer numbers are above 3.90, nearly a direct four-electron reduction pathway for the reduction of O_2 to H_2O . This preference for direct four-electron transfer pathway over indirect two-electron pathway is clearly demonstrated by the plot of k_1/k_2 in Figure 2. The k₁/k₂ ratio for py-Co-corrole/C ranges between 13.5 to 21, and py-Fe-corrole/C can reach 35 to 60 even more, which is highest value among the other non-precious catalysts reported in the literature (1-4). Figure 3 shows the H₂-O₂ PEMFC test of py-M-corrole/C in the cathode, which reveals a maximum power density of 330 mW cm⁻². This study indicates that py-Fecorrole/C and py-Co-corrole/C have the higher performances than previous studies of non-precious catalysts for PEMFCs. The effects of corrole structures with central metals and surrounding ligands on the ORR activity are investigated furthermore.

Reference

1. S. L. Gojković, S. Gupta and R. F. Savinell, Electrochimica Acta, **45**, 889 (1999).

2. M. R. Tarasevich, L. A. Beketaeva, B. N. Efremov, N. M. Zagudaeva, L. N. Kuznetsova, K. V. Rybalka and V. E. Sosenkin, Russian Journal of Electrochemistry, **40**, 542 (2004).

3. K. Lee, L. Zhang, H. Lui, R. Hui, Z. Shi and J. Zhang, Electrochimica Acta, **54**, 4704 (2009).

4. S.-T. Chang, C.-H. Wang, H.-Y. Du, H.-C. Hsu, C.-M. Kang, C.-C. Chen, J. C. S. Wu, S.-C. Yen, W.-F. Huang, L.-C. Chen, M. C. Lin and K.-H. Chen, Energy Environ. Sci., **5**, 5305.

Acknowledgements

The authors would like to thank the National Science Council and Academia Sinica, Taiwan for financial support under Contract No. NSC-101-2221-E-011-047-MY3

Figure 1 The ORR curves of py-Fe-corrole/C, py-Cocorrole/C, py-FePc/C and py-CoTMPP/C in saturated oxygen, 0.1 M HClO₄. Scan rate: 10 mV/s; rotation speed: 1600 rpm.

Figure 2 The k_1/k_2 ratios of py-Fe-corrole/C and py-Cocorrole/C as a function of applied potential.

Figure 3 Polarization curves of the H₂-O₂ PEMFCs using py-Fe-corrole/C, py-Co-corrole/C, py-FePc/C and py-CoTMPP/C as cathodes. Operation temperature: 70 °C; back pressure of H₂ and O₂: 1 atm; anode catalysts: 30 wt.% Pt/C with the metal loading of 0.25 mg cm⁻² (E-TEK); cathode catalysts: 2.0 mg cm⁻² of 60 wt.% py-M-corrole/C; electrolyte: Nafion® 212 (H⁺, DuPont).