Preparation of Uniform TiO₂ Thin Films by Supercritical Carbon Dioxide

<u>Wei-Hao Lin</u>,¹ Tso-Fu Mark Chang,² Masato Sone,²* Tatsuo Sato² and Yung-Jung Hsu¹*

*E-mail: yhsu@cc.nctu.edu.tw ¹Department of Materials Science and Engineering, National Chiao Tung University 1001 University Road, Hsinchu, Taiwan 30010, Republic of China

²Precision and Intelligence Laboratory Tokyo Institute of Technology Midori-ku, Yokohama-shi, Kanagawa 226-8503, Japan

As one of the most important semiconductors, TiO₂ has been extensively investigated to foster their applications in various technologically important fields including solar cell [1], photocatalysis [2], hydrogen generation [3] and gas sensing [4]. There have been many synthetic approaches proposed to fabricate TiO₂ thin films, such as CVD [5], sol-gel method [6], spray pyrolysis [7], hydrothermal reaction [8] and so on. These techniques usually involve prolonged reaction time which causes poor morphological control of the products. Among the different synthetic routes, electrochemical deposition affords a low-cost yet effective process for production of uniform TiO₂ thin films. Nevertheless, the evolution of H₂ on the electrode is an inevitable problem to be solved because H₂ bubbles would induce structural defects and damages on the film surface. By introducing supercritical carbon dioxide (denoted as Sc-CO₂) which shows high solubility of H2 in the electrochemical deposition system [9], the typical H2 evolution problem may be effectively solved to attain better crystalline property for the products.

In this work, a Sc-CO₂-assisted galvanostatic cathodic deposition process is developed (Figure 1(a)) for fabrication of TiO₂ thin films with controllable thickness. This is the first demonstration for electrochemical deposition of TiO_2 in supercritical fluid condition. The product is deposited cathodically on Cu substrate in a two-compartment cell under a fixed current density, in which platinum foil is employed as the counter electrode. The electrolyte comprises a mixture of water and Sc-CO₂ and the precursor used is TiCl₃. The deposition bath also contains C12H25(OCH2CH2)15OH, a nonionic surfactant which promotes the solubility of Sc-Co2 in water through the formation of microemulsion. Note that the direct deposition of TiO2 thin films on Cu substrate may facilitate relevant electrochemical property measurements since Cu substrate can act as the current collector. We systematically investigated the influence of Sc-CO₂ and surfactant additions on the microstructures of the resultant TiO₂. The dependence of electrochemical performance on the film thickness of TiO_2 is also interpreted. Figure 1(b) shows the photograph of Cu substrate upon the Sc-CO₂assisted electrochemical deposition operation. The whitelight color implies the successful deposition of TiO₂ on substrate surface. As displayed in Figure 1(c) and (d), the deposited TiO2 was considerable uniform, composed of nanoparticles with the typical size of 130~140 nm. The present synthetic approach could be further extended to obtain other metal oxide thin films such as ZnO, CuO, NiO and so on.

Figure 1. (a) Scheme of $Sc-CO_2$ -assisted electrochemical deposition system. (b) Photographs of TiO_2 thin films on Cu substrate. (c) Low-magnification and (d) high-magnification SEM images of the deposited films.

References

- (a) H.-F. Wang, L.-Y. Chen, W.-N. Su, J.-C. Chung, and B.-J. Hwang, J. Phys. Chem. C, **114**, 3185 (2010).
 (b) J.-K. Oh, J.-K. Lee, H.-S. Kim, S.-B. Han, and K.-W. Park, Chem. Mater., **22**, 1114 (2010).
- (a) H. Wang, T. You, W. Shi, J. Li, and L. Guo, J. Phys. Chem. C, **116**, 6490 (2012). (b) M. R. Elahifard, S. Rahimnejad, S. Haghighi, and M. R. Gholami, J. Am. Chem. Soc., **129**, 9552 (2007).
- 3. (a) H. Park and W. Choi, Langmuir, 22, 2906 (2006).
 (b) N. Lakshminarasimhan, A. D. Bokare, and W. Choi, J. Phys. Chem. C, 116, 17531 (2012).
- (a) J. Gong, Y. Li, Z. Hu, Z. Zhou, and Y. Deng, J. Phys. Chem. C, **114**, 9970 (2010). (b) F. Liang, T. L. Kelly, L.-B. Luo, H. Li, M. J. Sailor, and Y. Y. Li, ACS Appl. Mater. Interfaces, **4**, 4177 (2012).
- W.-J. Lee and Y.-M. Sung, Cryst. Growth Des., 12, 5792 (2012).
- (a) H. Zhang and G. Chen, Environ. Sci. Technol., 43, 2905 (2009).
 (b) S. Lee, I.-S. Cho, J. H. Lee, D. H. Kim, D. W. Kim, J. Y. Kim, H. Shin, J.-K. Lee, H. S. Jung, N.-G. Park, K. Kim, M. J. Ko, and K. S. Hong, Chem. Mater., 22, 1958 (2010).
- E. L. Unger, E. Ripaud, P. Leriche, A. Cravino, J. Roncali, E. M. J. Johansson, A. Hagfeldt, and G. Boschloo, J. Phys. Chem. C, **114**, 11659 (2010).
- (a) A. Nakahira, T. Kubo, and C. Numako, Inorg. Chem., 49, 5845 (2010). (b) T. Cao, Y. Li, C. Wang, C. Shao, and Y. Liu, Langmuir, 27, 2946 (2011).
- 9. T.-F. M. Chang, Ma. Sone, A. Shibata, C. Ishiyama, and Y. Higo, Electrochimica Acta, 55, 6469 (2010).