Enhanced Electrochemical Performance of SnO₂ anode material for Lithium-ion Battery via Fluorine Doping and C60 Coating

Chairul Hudaya^{1,2}, Ji Hun Park¹, Wonchang Choi^{1,2}, Joong Kee Lee^{1,2*}

 ¹Advanced Energy Materials Processing Laboratory, Center for Energy Convergence, Green City Research Institute
Korea Institute of Science and Technology, Hwarangno 14 gil 5, Seoul 136-791, Republic of Korea
²Department of Energy and Power Conversion Engineering, University of Science and Technology,
176 Gajungro Yuseong-gu, Daejeon 305-350, Republic of Korea
* Corresponding author : <u>leejk@kist.re.kr</u>

Two simultaneous strategies are applied to overcome capacity fading of tin oxide (SnO_2) as anode material for lithium-ion battery (LIB); first one is doping with fluorine atoms into the tin oxide $(SnO_2:F \text{ or FTO})$ and second is coating with C_{60} on the surface of the FTO. The thin film electrodes were fabricated in Electron Cyclotron Resonance – Metal Organic Chemical Vapor Deposition (ECR-MOCVD) and Radio-Frequency Plasma Assisted Thermal Evaporation (RF-PATE). The study shows both doping and coating have contributed to a better electrochemical performance due to the enhancement of electronic conductivity of the film and the provision of passivation layer during the electrochemical reaction attributed to the presence of C_{60} coating on FTO surface.