

Stability Computations in a Series of Extraction-Derivatized Metallofullerenes:
 $\text{La}@C_x / \text{La}@C_x\text{-C}_6\text{H}_3\text{Cl}_2$

Zdeněk Slanina,¹
 Takeshi Akasaka¹ and Shigeru Nagase²

¹Life Science Center of
 Tsukuba Advanced Research Alliance
 University of Tsukuba, Tsukuba 305, Japan
²Fukui Institute for Fundamental Chemistry
 Kyoto University, Kyoto 606, Japan

Recently, an extraction of metallofullerenes from soot using 1,2,4-trichlorobenzene has been developed and applied to La@C₇₂ [1], La@C₇₄ [2] La@C₈₀ [3] and La@C₈₂ [4]. In all four cases the cages were derivatized by the solvent, forming La@C_x-C₆H₃Cl₂, and the following X-ray analysis moreover disclosed that in some cases rather unexpected cages are involved - non-IPR C₇₂(C₂), C₈₀(C_{2v};3), and C₈₂(C_{3v};7) cage. In order to interpret the interesting discoveries, a two step computational treatment is used. The first step deals with the high-temperature gas-phase formation of the pristine (underivatized) endohedrals like La@C₈₀(C_{2v};3) and La@C₈₀(C_{2v};5). The second step models the reaction with the solvent that produces the La@C₈₀-C₆H₃Cl₂ derivatives. In order to have a more reliable description of the thermodynamic terms, the Gibbs free energies were evaluated instead of mere potential-energy values and a representative temperature of 1500 and 298 K was considered with the first and second reaction, respectively. Although the underivatized La@C₈₀(C_{2v};5) species is lower in energy, the derivatization changes the energy order so that after the derivatization the La@C₈₀(C_{2v};3) isomer should prevail in the solution. When the computed Gibbs free energy terms are converted into the equilibrium constants and concentra-

tions, the model evaluation suggests that the $\frac{\text{La}@C_{80}(C_{2v};3)-C_6\text{H}_3\text{Cl}_2}{\text{La}@C_{80}(C_{2v};5)-C_6\text{H}_3\text{Cl}_2}$ concentration ratio in solution should be equal to about 67 (at the B3LYP/6-31G*~SDD computational level). A similar enhancement of La@C₈₀(C_{2v};3)-C₆H₃Cl₂ is also found with respect to the La@C₈₀(D_{5h};6)-C₆H₃Cl₂ production. The computational treatment is applied throughout the La@C_x / La@C_x-C₆H₃Cl₂ series.

- [1] T. Wakahara, H. Nikawa, T. Kikuchi, T. Nakahodo, G. M. A. Rahman, T. Tsuchiya, Y. Maeda, T. Akasaka, K. Yoza, E. Horn, K. Yamamoto, N. Mizorogi, Z. Slanina, S. Nagase, J. Am. Chem. Soc. 128, 14228-14229 (2006).
- [2] H. Nikawa, T. Kikuchi, T. Wakahara, T. Nakahodo, T. Tsuchiya, G. M. A. Rahman, T. Akasaka, Y. Maeda, K. Yoza, E. Horn, K. Yamamoto, N. Mizorogi, S. Nagase, J. Am. Chem. Soc. 127, 9684-9685 (2005).
- [3] H. Nikawa, T. Yamada, B. P. Cao, N. Mizorogi, Z. Slanina, T. Tsuchiya, T. Akasaka, K. Yoza, S. Nagase, J. Am. Chem. Soc. 131, 10950-10954 (2009).
- [4] T. Akasaka, X. Lu, H. Kuga, H. Nikawa, N. Mizorogi, Z. Slanina, T. Tsuchiya, K. Yoza, S. Nagase, Angew. Chem. Int. Ed. 49, 9715-9719 (2010).