

DNA hybridization Detection by Charge Perturbation
Through DNA at poly(thionine)-Modified Glassy Carbon
And Gold Electrodes

Mohammad Mahbubur Rahman¹, and Jae-Joon Lee^{1,2*}

¹ Department of Advanced Technology Fusion, Konkuk
University, Seoul 143-701, Korea

² Nanotechnology Research Center & Department of
Applied Chemistry, Konkuk University, Chungju 380-
701, Korea

* Author to whom correspondence should be addressed;
Tel.: +82-43-840-3580; Fax: +82-43-851-4169
(jjlee@kku.ac.kr)

Simple and label-free electrochemical sensors for DNA hybridization detection were developed based on poly(thionine) [PTH] modified glassy carbon and gold electrodes. Probe ssDNA was immobilized on the PTH film via covalent linkage between pendant amine (-NH₂) group of the PTH and the phosphate (PO₄⁻) group of the ssDNA. The hybridizations were examined with different target ssDNA sequences. DPV showed a significant decrease of Fe²⁺ oxidation peak current density (J_{peak}) when hybridized with complementary and 1-base miss match ssDNA sequences. 3-base miss match and non-complementary ssDNA sequences showed the negligible changes of Fe²⁺ oxidation J_{peak} . EIS demonstrated an increased charge transfer resistance (R_{ct}) and decreased charge transfer rate constant (K_a^0) after hybridization of complementary sequence. The PTH/GCE and PTH/GE sensors showed the excellent sensitivity of 1.44 and 50 μ A/cm²/nM with the detection limit of 0.14 and 0.36 nM, respectively for sensing complementary ssDNA hybridization.