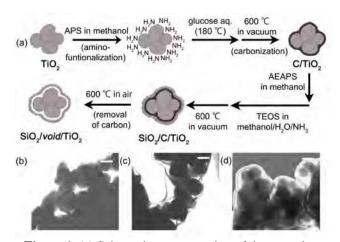
A Hollow Core-Shell Silica-Titania Photocatalyst for Efficient Stereoselective Synthesis of Pipecolinic Acid

Bunsho Ohtani and Sheela Chandren Catalysis Research Center, Hokkaido University Sapporo 001-0021, Japan

## INTRODUCTION

One of the approaches for photocatalytic selective organic synthesis is utilization of photocatalysts of or in defined microstructures; TiO<sub>2</sub> particles or isolated titanium oxide species are distributed onto or into inorganic supports. We have reported<sup>1,2</sup> fabrication of a novel core-shell composite photocatalyst which consisted of commercially available  $TiO_2$  particles incorporated in a hollow silica shell (SiO<sub>2</sub>/void/TiO<sub>2</sub>). The composite possesses size-selective properties in the photodecomposition of organic compounds; SiO<sub>2</sub>/void/TiO<sub>2</sub> showed photocatalytic activity for decomposition of small substrates retaining the activity of original bare TiO<sub>2</sub>, while negligible activity for polymers was observed, i.e., SiO<sub>2</sub>/void/TiO<sub>2</sub> exhibits molecular size selectivity. Recently, we have attempted to use the SiO<sub>2</sub>/void/TiO<sub>2</sub> photocatalyst for the synthesis of L-pipecolinic acid (L-PCA), a useful intermediate material for various fine chemicals,<sup>3</sup> and found another function of silica shell to improve stereoselectivity, instead of molecular-size selectivity and report here.<sup>4,5</sup>


## EXPERIMENTAL

Preparation of SiO<sub>2</sub>/void/TiO<sub>2</sub> was performed by coating of TiO<sub>2</sub> (Ishihara Sangyo ST-41) with a carbon layer and a silica layer followed by heat treatment to remove the carbon layer, as shown schematically in Fig. 1(a).<sup>1,2</sup> As a reference, TiO<sub>2</sub> mechanically mixed with silica (Wako; *mec*-SiO<sub>2</sub>+TiO<sub>2</sub>) and TiO<sub>2</sub> directly coated with silica (*dir*-SiO<sub>2</sub>/TiO<sub>2</sub>) were also prepared. Since platinum (Pt) deposits on the TiO<sub>2</sub> surface are required for the photocatalytic synthesis of L-PCA,<sup>3</sup> all samples were platinized (2wt%) using two-step photodeposition method.

For the photocatalytic reaction of redoxcombined stereoselective synthesis of L-pipecolinic acid (L-PCA) from L-lysine (L-Lys), a Pt-loaded photocatalyst (0.05 g as TiO<sub>2</sub>) was suspended in an aqueous solution (5.0 cm<sup>3</sup>) containing L-Lys (100  $\mu$ mol) and photoirradiated by a high-pressure mercury arc (Eiko-sha, 400 W) under argon (Ar) with magnetic stirring (1000 rpm) at 298 K. The yield of enantiomers of PCA, as well as the amount of unreacted L-Lys, was measured by HPLC (Shimadzu LC-6A equipped with a Daicel Chiral-Pak MA(+) column and an ultraviolet absorption detector).

## **RESULTS AND DISCUSSION**

Table 1 summarizes the results for the synthesis of L-PCA from L-Lys by 2-h photoirradiation using various platinized  $TiO_2$  photocatalysts. Photoirradiation of the  $TiO_2$  photocatalysts suspended in an aqueous solution of L-Lys under Ar led to the formation of PCA, as reported previously.<sup>3</sup> Complete consumption of L-Lys was achieved using  $TiO_2$  and also *mec*-SiO<sub>2</sub>+TiO<sub>2</sub>. These photocatalysts showed very similar results in terms of selectivity (S<sub>PCA</sub>), optical purity (OP<sub>PCA</sub>) and the rate of PCA formation (R<sub>PCA</sub>), suggesting that the mechanical mixing of silica with  $TiO_2$  part was responsible for the photocatalytic reaction. As expected, *dir*-SiO<sub>2</sub>/TiO<sub>2</sub> showed poor photocatalytic activity to convert only 14% of L-Lys, thus proving that direct coverage of the TiO<sub>2</sub> surface with silica hinders the activity of the TiO<sub>2</sub> by



**Figure 1.** (a) Schematic representation of the procedure for preparation of SiO<sub>2</sub>/*void*/TiO<sub>2</sub>, SEM image taken in transmission mode for (b) TiO<sub>2</sub>, (c) SiO<sub>2</sub>(0.5)/*void*/TiO<sub>2</sub> and (d) SiO<sub>2</sub>(0.5)/*void*/TiO<sub>2</sub> after deposition of Pt particles. Scale bar corresponds to 100 nm.

 Table 1. Synthesis of PCA from L-Lys using various platinized TiO<sub>2</sub> photocatalysts.

| platilized 1102 photocalarysts.                     |                     |                            |                    |               |                                       |
|-----------------------------------------------------|---------------------|----------------------------|--------------------|---------------|---------------------------------------|
| photocatalyst                                       | conver-<br>sion (%) | $\frac{S_{PCA}^{a}}{(\%)}$ | $OP_{PCA}^{b}$ (%) | $R_{PCA}^{c}$ | Y <sub>H2</sub> <sup>d</sup><br>/µmol |
| TiO <sub>2</sub>                                    | 100                 | 51                         | 57                 | 27            | 75                                    |
| mec-SiO <sub>2</sub> +TiO <sub>2</sub>              | 100                 | 52                         | 59                 | 27            | 63                                    |
| dir-SiO <sub>2</sub> /TiO <sub>2</sub> <sup>e</sup> | 14                  | 26                         | _f                 | 0.2           | 2                                     |
| SiO <sub>2</sub> (0.5)/void/TiO <sub>2</sub>        | 98                  | 43                         | 70                 | 22            | 72                                    |
| SiO <sub>2</sub> (1.5)/void/TiO <sub>2</sub>        | 96                  | 50                         | 70                 | 25            | 50                                    |
| SiO <sub>2</sub> (3.0)/void/TiO <sub>2</sub>        | 96                  | 46                         | 70                 | 23            | 57                                    |

<sup>a</sup>Selectivity of PCA production based on amount of consumed L-Lys. <sup>b</sup>Optical purity of L-PCA. <sup>c</sup>Rate of PCA formation in the unit of µmol h<sup>-1</sup>. <sup>d</sup>Yield of H<sub>2</sub>. <sup>e</sup>Platinization via photodeposition was unsuccessful (see text). <sup>f</sup>Not determined.

prohibiting Pt deposition as well as L-Lys adsorption onto the bare TiO<sub>2</sub> surface. The SiO<sub>2</sub>(0.5)/void/TiO<sub>2</sub> particles prepared with 0.5 h of silvlation period showed the performance almost the same as that of bare  $TiO_2$ . Although the selectivity was slightly lower than that of bare  $TiO_2$ ,  $SiO_2/void/TiO_2$  exhibited the highest  $OP_{PCA}$ , 13% more than that of platinized bare TiO<sub>2</sub>, among all the samples. In order to further prove the effectiveness of the hollow core-shell structure, SiO<sub>2</sub>/void/TiO<sub>2</sub> with thicker layer of silica shell were also prepared, by extending the silvlation period (1.5 h and 3.0 h). The thickness of the silica layer was increased to 14-32 nm and 28-45 nm, respectively, from 9-10 nm for SiO<sub>2</sub>(0.5)/void/TiO<sub>2</sub>. While SiO<sub>2</sub>(1.5)/void/TiO<sub>2</sub> exhibited the best performance among the tested samples, it seemed that the photocatalytic performance (conversion, SPCA, OPPCA and R<sub>PCA</sub>) was almost independent of the silica shell thickness. This suggests that the silica shell behaves as highly porous optically transparent penetration-free layer which surrounds the TiO<sub>2</sub> core and that this swollen sponge-like silica layer controls the stereoselectivity of the reaction.

## REFERENCES

- 1. S. Ikeda et al., Chem. Commun., 3753 (2007).
- 2. S. Ikeda et al., *Phys. Chem. Chem. Phys.*, **9**, 6319 (2007).
- 3. B. Pal et al., J. Catal., 217, 152 (2003).
- 4. S. Chandren and B. Ohtani, J. Photochem. Photobiol. A: Chem., 246, 50 (2012).
- 5. S. Chandren and B. Ohtani, *Chem. Lett.*, **41**, 677 (2012).