Precise Parameter Extraction for Organic Thin-Film Transistors Operating in the Linear Regime

Ognian Marinov*, Cong Feng, M. Jamal Deen Electrical and Computer Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4K1 Canada (* Email: omarinov@yahoo.com)

We discuss the application of a precise parameter extraction technique [1] for organic thin-film transistors (OTFT) operating in the linear regime. Unmatched precision is achieved by utilizing Y and H functions in a proper sequence, resolving the parametric interference in other characterisation techniques [2]. The Y_{VG} function compensates for the first order degradation in the current-voltage (I–V) characteristics of the OTFT that is caused by contact resistance R_C . The Y_{VG} function is inferred from the Y-function of MOSFET [3], and for OTFT with mobility enhancement factor γ >0 is

$$Y_{VG} \equiv \frac{I_D}{\sqrt{g_m V_D}} \approx \sqrt{\frac{K}{1+\gamma}} \times (V_G - V_T)^{1+\gamma/2} , \quad (1)$$

where the current $I_D(V_G)$ and transconductance $g_m(V_G) = \partial I_D / \partial V_G$ are experimental quantities and functions of the gate bias voltage V_G at given drain bias voltage V_D (source $V_S=0$); V_T is the threshold voltage of the OTFT; K=(W/L) $\mu_o C_I$ is the OTFT "constant" at low bias $V_G \sim V_T$, at which the carrier mobility is μ_o ; C_I is the unit-area gate insulator capacitance; and W/L is the ratio of the channel width W to channel length L. For OTFT, $Y_{VG} \mbox{ is a power-law function of } V_G \mbox{, compensated for } R_C \mbox{,}$ which allows for precise determination of $\boldsymbol{\gamma}$ from the slope of HY_{VG} function, given by

$$HY_{VG} = \frac{\int Y_{VG} dV_G}{Y_{VG}} \approx \frac{V_G - V_T}{2 + \gamma/2},$$
 (2)

and then for compensation of γ in Y_{VG} , thus, obtaining linear γY_{VG} function, given by

$$\gamma Y_{VG} \equiv \frac{1+\gamma/2}{\sqrt{Y_{VG}}} \approx \frac{2+\gamma}{\sqrt{K/(1+\gamma)}} \times \left(V_{G} - V_{T}\right). \quad (3)$$

Linear regression of γY_{VG} vs. V_G yields precise values for K (thus, mobility) and V_T (Table 1). Knowing precisely the values of V_T , K and γ , one also extracts precise value for R_C , and consequent use of these parameters in the TFT compact DC model [4, 5] yields very good fit for I_D and also for g_m (Fig. 1). The TFT compact DC model is arranged as

$$I_{D} = K \frac{V_{GTS}^{2+\gamma} - V_{GTD}^{2+\gamma}}{2+\gamma} + I_{off}, \qquad (4)$$

including interpolation with effective overdrive voltages for sub-threshold regime of operation of the OTFT, given by

$$\begin{split} V_{\text{GTS}} &= V_{\text{SS}} \ln \left[1 + \exp \left(\frac{V_{\text{G}} - V_{\text{T}} - V_{\text{SI}}}{V_{\text{SS}}} \right) \right] \quad (5) \\ V_{\text{GTD}} &= V_{\text{SS}} \ln \left[1 + \exp \left(\frac{V_{\text{G}} - V_{\text{T}} - V_{\text{DI}}}{V_{\text{SS}}} \right) \right] \end{split}$$

where V_{SS} is a voltage parameter for the subthreshold regime (V_{SS} is approximately the subthreshold slope $SS=\partial V_G/\partial \log_{10}(I_D)$ at $V_G << V_T$ or $V_{SS} \approx \frac{1}{2}SS$ at $V_G \approx V_T$, see [4, 5]). The potentials $V_{SI}=V_S+I_D\times R_S=I_D\times \frac{1}{2}R_C$ and $V_{DI}=V_D-I_D\times R_D=V_D-I_D\times R_C$ of the intrinsic channel at the source ($V_S=0$) and the drain sides, respectively, account for the voltage drops on contact resistances $R_D=R_S=\frac{1}{2}R_C$. Leakage current I_{off} is also included in eq. (4). The values of the subthreshold parameters V_{SS} and I_{off} are varied, until a good fit to the measured I_D was achieved at the subthreshold and off regions in semi-logarithmic plot of the I_D-V_D characteristic (not shown). The parameters of the OTFT are given in Table 1.

The proper use of the characterization technique is discussed, as well as possible second-order degradation mechanism in the I–V characteristics of the OTFT, which we are able to observe (Fig. 1), owing to the high precision of the parameter extraction technique.

Table 1. Values of extracted and other parameters of the OTFT, also used in the re-simulation of the measurement

Parameter	Unit	Value
$K = (W/L)\mu_o C_I$	$nA/V^{2+\gamma}$	155±3
-V _T	V	-12.08±0.4
γ	numeric	0.304 ± 0.005
$R_D = R_S = \frac{1}{2}R_C$	kΩ	9.762±0.09
V _{SS}	V	1.48±0.1
I _{off}	nA	0.127 ± 0.05
W=5000 μ m, L=90 μ m, C _I =17nF/cm ² (200nm SiO ₂ +OTS)		
Top contact (gold), bottom gate (degenerated Si wafer),		
30nm organic semiconductor film of diketopyrrolopyrrole		
β-unsubstituted quaterthiophene (DKPP-BT)		

Xerox Research Centre (Mississauga, Canada) is acknowledged for provision of samples.

References

- 1.O. Marinov, C. Feng, M. J. Deen, unpublished, 20 pages, 2012.
- J. Tejada, K. Awawdeh, J. Villanueva, J. Carceller, M. J. Deen, N. Chaure, T. Basova, A. Ray, *Organic Electronics*, **12**(5), 832-842, 2011.
- 3.G. Ghibaudo, *Electronics Letters*, **24**(9), 543-545, 1988.
- 4. O. Marinov, M. J. Deen, U. Zschieschang, H. Klauk, *IEEE Trans. Electron Devices*, **56**(12), 2952-2961, 2009.
- 5. M. J. Deen, O. Marinov, U. Zschieschang, H. Klauk, *IEEE Trans. Electron Devices*, **56**(12), 2962-2968, 2009.

Fig. 1. Experimental (symbols) and re-simulated (lines) I_D-V_G (circles) and g_m-V_G (squares) characteristics of an OTFT (Table 1). Unsupported by models second order degradation in the characteristics is observed at high V_G .