TiO₂ Nanotube (T_NT) surface treatment revisited: Implications of ZnO, TiCl₄, and H₂O₂ treatment on the photoelectrochemical properties of T_NT and T_NT/CdSe

(Invited presentation)

Bratindranath Mukherjee, Winn Wilson and Vaidyanathan(Ravi) Subramanian*

University of Nevada, Reno

The surface treatment of anodized TiO₂ nanotube (T_NT) is very desirable for enhancing its photoelectrochemical properties and often is a prerequisite to deposition of any overlying layer for photoactivity efficiency improvement. This study provides a comparative analysis into the effects of such surface treatments and the mechanistic insights behind the observed improvements in the performance of the treated T_NTs. T_NT surface treatment using three approaches, viz., TiCl₄, Zn(NH₃)₄²⁺, and H₂O₂ is examined. TiCl₄ and Zn(NH₃)₄²⁺ treatment results in formation of discontinuous islands of the respective oxides with 5-10nm and 15-20nm diameter particles. TiCl₄ treatment demonstrates an increase of 7.4% in photovoltage and is the most effective of the three approaches. Zn(NH₃)₄²⁺ treatment also results in ~2% increase in photovoltage. However, a surface treatment of T_NT using H₂O₂ results only in a favourable shift in flatband potential (80mV). The T_NTs are rendered ineffective as H₂O₂ treatment causes the destabilization of the T_NT at the base. Finally, the activity of an overlying chalcogenide layer is improved with the TiCl₄ and Zn(NH₃)₄²⁺ treatment (and not with H₂O₂) as evident from the photoelectrochemical responses: (J_{T NT/TiO2/CdSe}>J_{T NT/ZnO/CdSe}>J_{T NT/H2O2/CdSe}).

* Speaker Invited by: Prof. Imahori, Japan