

Ab initio study of the capacity loss in Over-Lithiated Oxides cathode material for Li-ion batteries

F. Kong, R. C. Longo and K. Cho

Materials Science & Engineering Dept., The University of Texas at Dallas, Richardson, TX 75080

The Over-Lithiated-Oxides (OLO), composed of the layered structure $x\text{Li}_2\text{MnO}_3(1-x)\text{LiMO}_2$ (M=Mn,Fe,Co, Ni), are shown to deliver much higher capacity than traditional layered oxides, due to the presence of the Li_2MnO_3 phase. However, a long voltage “plateau” around 4.5 V and a large capacity loss (over 100 mAh g⁻¹) are observed during the first charge-discharge cycle. Although the microscopic origins are still under dispute and investigation, some mechanisms to explain this strange phenomenon have been proposed based on experimental findings, including O²⁻ ion migration, lattice densification, and Li⁺/H⁺ exchange. Through our *ab initio* density-functional theory (DFT) simulations, we will investigate mechanisms from atomic-scale models to analyze the stable configurations and the variation in the electronic structure with Li⁺/O²⁻/Mⁿ⁺ extraction. Based on atomic scale understanding of those mechanisms, we will discuss some helpful methods to overcome the capacity loss problem.

Acknowledgments

This research was supported by Samsung GRO project.