NO₂ sensor based on III-V nanowire FET devices

Wei Wang^{1, 3}, Shirui Guo², Miroslav Penchev³, Mihrimah Ozkan^{2,3}, Cengiz S. Ozkan^{1, 4}
¹ Program of Materials Science and Engineering, University of California,
900 University Ave., Riverside, CA 92521, USA.
² Department of Chemistry, University of California,
900 University Ave., Riverside, CA 92521, USA
³ Department of Electrical Engineering, University of California,
900 University Ave., Riverside, CA 92521, USA
⁴ Department of Mechanical Engineering, University of California,

900 University Ave., Riverside, CA 92521, USA

In this work, we demonstrate the detection of NO₂ using transistors based on single crystalline n-type indium antimonide nanowires devices. Single crystalline (InSb) nanowires are synthesized by ambient pressure chemical vapor deposition (APCVD) technique, using Au particles as catalyst, via a vapor liquid solid mechanism (Figure 1). Structural properties of the as-grown InSb nanowires were investigated by AFM, SEM and TEM analysis. Nanowire Field Effect Transistors (NWFETs) were fabricated in back-gate configuration using SiO₂ as gate insulator (Figure 2). The diameter of InSb nanowires used in the fabricated NWFETs varied from 30-60 nm. The NWFETs show a decrease in conductance upon exposure to NO₂ which is possible due to the charge transfer from the InSb NW surface to the surface absorbed NO2 molecules. All experimental results suggest InSb NW device as a promising candidate in sensing applications.

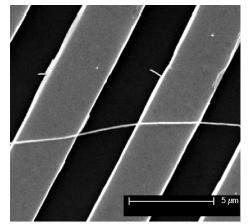


Figure 2 SEM image of the NWFET device.

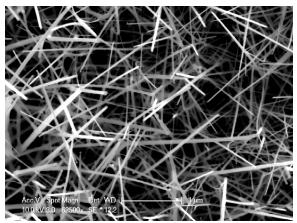


Figure 1 SEM image of the InSb nanowires.