Multi-ionic Lithium Salts for Solid Polymer Electrolytes
Parameswara Rao Chinnam and Stephanie L. Wunder
Department of Chemistry, Temple University
Philadelphia, PA 19122

In order to form solid polymer electrolytes (SPEs) with the desired high ionic conductivities and Li⁺ ion transference numbers (τ⁺), one approach is to use multi-ionic salts that contain organic groups. When dissolved in a polar matrix such as polyethylene oxide (PEO), phase separation can take place, so that the organic groups cluster and form a structural phase. The anionic groups on the salt then point outwards towards the polar matrix and the dissociated Li⁺ ions are solvated by ethylene oxide (EO) units. Two examples of multi-ionic salts investigated here are based on polyoctahedral silsesquioxane (POSS) [7]: POSS-phenyl\(\text{BF}_3\) and a half cube POSS, [PhSiO(BF\(\text{3}\)\(_7\)]\(_n\), (Figure 1). Both are prepared by addition of BF\(\text{3}\) etherates to the respective POSS-phenyl\(\text{Li}\) or [PhSiO(O\(\text{Li}\)])\(_n\). [7]

[PhSiO(BF\(\text{3}\)\(_7\)]\(_n\) has a higher ratio of Li⁺ ions/phenyl group than POSS-phenyl\(\text{BF}_3\)), but both have higher ionic densities compared with single ion conductors. POSS-phenyl\(\text{BF}_3\)) and [PhSiO(BF\(\text{3}\)\(_7\)]\(_n\) have Janus-like properties, with portions of the molecule either hydrophobic or ionic.

Figure 1 (left) structure of [PhSiO(BF\(_3\)]\(_n\); (right) POSS-phenyl\(\text{BF}_3\)) showing Janus-like properties and pocket formed by three –Si-O-BF\(_3\) groups. (●) grey: phenyl rings and Si; (●) red: oxygen; (●) white: fluorine; (●) yellow: boron; (●) orange: Li ions (randomly placed).

Blends of PEO(600K) or POSS-PEG\(_8\) (eight polyethylene glycols at the apexes of the POSS cage) with POSS-phenyl\(\text{BF}_3\)) form SPE\(_s\), 4, and exhibit phase separation as observed by TEM or SEM (Figure 2 left). These SPEs remain true hard solids until ~100 °C, and then become elastomeric, despite an absence of PEO crystallization. The solid/elastomeric morphology is the result of cross-link sites provided by the phenyl aggregates and bridging of the POSS clusters by PEO chains: cluster-Si-O-BF\(_3\) “Li⁺” (EO\(_n\) “Li⁺” “F”-B-O-Si-cluster.

Figure 2 (left). SEM image of POSS-phenyl\(\text{BF}_3\))/POSS-PEG\(_8\) with stainless steel working electrode and Li\(\text{SO}_2\) electrolyte; potential scanned from 2.6 V to 4.5V at 30mV/ sec.

Electrochemical evaluation of POSS-phenyl\(\text{BF}_3\))/POSS-PEG\(_8\) or POSS-phenyl\(\text{BF}_3\))/POSS-PeG\(_8\) was obtained for O/Li ratios between 6/1 and 20/1. The SPEs had electrochemical stability windows of 4.6 V and excellent interfacial stability with lithium metal. The salts are reversible towards Li²⁺ between 2.6 and 4.5 V, as shown by cyclic voltammetry (CV) scans (Figure 2 right). The highest room temperature conductivity (σ = 4 x 10\(^{-3}\) S/cm) was obtained for POSS-phenyl\(\text{BF}_3\))/PEO(600K) at O/Li = 14/1, and at T > 60 °C, when the materials were still solids, σ > 10\(^{-2}\) S/cm. The lithium ion transference number was τ⁺ = 0.6. We suggest that the rigid structure of the ionic pocket for POSS-phenyl\(\text{BF}_3\)) inhibits ion pair and conductive triplet formation.

However, for these multi-ionic salts decreasing O/Li in order to increase the number of Li⁺ ions also adds more phenyl groups. For POSS-phenyl\(\text{BF}_3\)), this results in a majority hydrophobic structural phase with non-connected inclusions of the conductive PEO/Li⁺ phase. In order to increase the amount of Li⁺ and still preserve a continuous conductive phase, the [PhSiO(BF\(_3\))\(_7\)]\(_n\) salt was synthesized, since it had a higher density of Li⁺ ions. (Figure 3). DSC of [PhSiO(OLi)]\(_n\)/POSS-PeG\(_8\) and [PhSiO(OBF\(_3\)\(_7\)]\(_n\)/POSS-PeG\(_8\) both with O/Li = 16/1

Figure 3. DSC of [PhSiO(O\(\text{Li}\)])\(_n\)/POSS-PeG\(_8\) and [PhSiO(OBF\(_3\))]\(_n\)/POSS-PeG\(_8\) both with O/Li = 16/1

Preliminary data on [PhSiO(BF\(_3\))]\(_n\)/POSS-PeG\(_8\) indicates that it has much better solubility in POSS-PeG\(_8\) than does POSS-phenyl\(\text{BF}_3\)). As in the case of POSS-phenyl\(\text{BF}_3\)), the [PhSiO(BF\(_3\))]\(_n\) version has much greater Li⁺ ion dissociation than does the [PhSiO(O\(\text{Li}\)]\(_n\)). This is demonstrated by differential scanning calorimetry (DSC) data (Figure 3). The T\(_g\) increases and crystallinity suppression is the result of Li⁺ ion complexation with the ether oxygens of PEG.

Figure 4. CV scan for 14/1 PEO(600K)/POSS-phenyl\(\text{BF}_3\)) with stainless steel working electrode and Li\(\text{SO}_2\) electrolyte; potential scanned from 2.6 V to 4.5V at 30mV/sec.

Acknowledgements
The authors are grateful for partial support of this research from both NSF (DMR-1207221) and DOE/Hybrid Plastics (DE-SC0008277).