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mobilities, have been established on pristine sampi
idealized conditions. However, for nanoelectronic
applications, graphene needs to be interfaced atller
materials in a manner that either preserves it$nait
properties or modifies its properties in a manrigat t
enhances functionality [1]. For example, low powed
high speed field-effect transistors require high
capacitance, low leakage, and low interface trapsitg
high-k dielectrics. Furthermore, to expand itsepdigl
utility for digital electronics and optoelectronjcs
graphene would ideally be converted from its inhere
zero band gap condition into a direct band gap
semiconductor with tunable doping. Towards thewmse
this talk focuses on chemical functionalizatiorattgies
for interfacing graphene with other materials amd f
tailoring its electronic properties.

For example, several noncovalent chemistries have
been demonstrated and characterized at the motecula
scale with ultra-high vacuum (UHV) scanning tunngli
microscopy (ST™M) including 3,4,9,10-
perylenetetracarboxylic dianhydride (PTCDA) [2-4jda
10,12 pentacosadiynoic acid (PCDA) [5]. PTCDA is
shown to be an effective atomic layer depositioh.)
seeding layer for high-k dielectrics (e.g.,®@4 and HfQ)
such that the PTCDA monolayer remains intact agk w
defined passivating layer at the graphene-dietectri
interface following ALD [6,7]. On the other harliCDA
forms  one-dimensionally ordered self-assembled
monolayers on graphene. The PCDA can then be
stabilized by ultraviolet photopolymerization, yleig
one-dimensional polymers with sub-2 nm widths dat
in registry with the underlying graphene latticg [Jhese
ordered cross-linked polymers are promising tersglat
for graphene nanoribbons.

Beyond noncovalent self-assembled monolayers,
this talk will also explore covalent modificatiochemes
for graphene based on free radical chemistries [B].
particular, atomic oxygen has been established ras a
effective method for homogeneously functionalizing
graphene with epoxide groups in UHV [9]. Importgnt
this covalent functionalization method is fully ezsible
under mild thermal annealing conditions (~ 260°G) a
shown by atomic resolution UHV STM imaging. In
addition to chemically doping graphene, epoxidation
yields local modification of the graphene bandstie
and provides multiple pathways for further chemical
functionalization [10].
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