

O_2 reduction and evolution at metal oxides in alkaline electrolyte: A study of the role of cations and isotope exchange experiments

C. Schmidt, C. Molls, H.M.A. Amin, H. Baltruschat

University of Bonn
Roemerstrasse 164, D 53117 Bonn, Germany

Within the context of elucidating the possibilities of aqueous Li-air batteries, several metal oxides of the perovskite and spinell type such as Co_3O_4 have been tested as bifunctional catalysts in alkaline electrolyte. The effect of the cation and concentration on O_2 evolution and reduction has been studied.

Previous isotope exchange experiments using DEMS had shown that in acid electrolyte the surface oxygen participates in the O_2 evolution at RuO_2 [1], IrO_2 [2, 3] and $Ru_{0.9}Ni_{0.1}O_2$ [4], but not at Pt. Such experiments have now been performed in alkaline electrolyte with the above mentioned catalysts in order to better understand the mechanism and activity.

References:

- [1] M. Wohlfahrt-Mehrens and J. Heitbaum, *J. Electroanal. Chem.*, 237 (1987) 251.
- [2] S. Fierro, T. Nagel, H. Baltruschat and C. Comninellis, *Electrochem. Solid State Lett.*, 11 (2008) E20.
- [3] S. Fierro, T. Nagel, H. Baltruschat and C. Comninellis, *Electrochim. Commun.*, 9 (2007) 1969.
- [4] K. Macounova, M. Makarova and P. Krti \acute{c} , *Electrochim. Commun.*, 11 (2009) 1865.