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Transport in graphene-based nanodevices transport mechanism in etched graphene nanoribbons
does not depend much on the underlying substrate
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Graphene, the first real two-dimensional solid cstirsy

of a hexagonal lattice of carbon atoms, revealdgh h
carrier mobility and quantum Hall effect even abmo
temperature. The absence of the hyperfine fiefdGnand

the weak spin-orbit interaction makes graphene
additionally particularly interesting for advancespin-
based devices. However, the implementation of stfte
the-art semiconductor device concepts, such asistans
remains challenging since graphene exhibits no ggner
band gap.
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It has been shown that by tailoring bulk grapheme i ‘EO (c) giﬁ
narrow ribbons an effective band gap (i.e. trarisgap) &1 g s
can be induced. A long this line, first graphenargum 82 = 205
devices have been demonstrated, such as graphene 8, @ 15§
nanoribbons, quantum interference devices, andhgrap B @ 102
single electron transistors [1,2]. Here we will gian 2 X X 57
overview over our recent experiments carried out on S 5020 3040 50 OS5 18 185 0
narrow graphene constrictions [3-5] and graphene Back-gate V., (V) Back-gate Vi, (V)

guantum devices [6-12] at low temperatures (100 mK _ ) ) .
2K). These nanostructured devices are fabricated by FIG. 1: () Scanning force microscope image of tahes

mechanical exfoliation of graphite followed by eten graphene nanoribbon on hexagonal Boron Nitride. (b)
beam lithography and dry etching techniques baseano Scanning electr_on microscope image of a s_us_pended
Ar/O, plasma. The fabricated graphene nanodevices are graphene nanoribbon. (c) Back gate characterisiits
equipped with a number of all-graphene in-planegér hole and electron transport regimes. (d)_ Differanti
local electrostatic control. The presented measengsn conductance versus back-gate voltage and biasgeolta
demonstrate the interplay of lithographic confineine a 200 nm long graphene nanoribbon (width of 50 nm).
where electron-electron interactions manifest ire th Distinct diamonds of fully suppressed conductarare loe
appearance of the Coulomb blockade effect, andatsp observed (white dashed line).
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