Preparation and Electrochemical Performances of TiO$_2$/graphene Composite as Anode Material for High-power Lithium Ion Batteries

Quan-feng Dong* Lin-lin Qin, Ming-sen Zheng

State Key Lab of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China
Email: qfdong@xmu.edu.cn

Titanium dioxide (TiO$_2$) possesses good reversibility, small volume change during charge-discharge process, low cost and environmental friendly, which make it to be one of the ideal anode materials for high power lithium-ion batteries. To enhance the electronic conductivity and structural stability of TiO$_2$, honeycomb-like porous TiO$_2$/GNs nanocomposite was prepared by a reflux method. The composite was characterized by XRD, SEM, TEM, BET and their electrochemical performances were investigated by galvanostatic charge/discharge. Results indicated that the nanosized anatase TiO$_2$ (about 5-8 nm) particles were uniformly dispersed on the surface of GNs. The honeycomb-like porous TiO$_2$/GNs nanocomposite exhibited excellent rate capability and cycling performance: a stable charging capacity of 154.1 mAh·g$^{-1}$ was obtained at 50 C, and could recover to 241.7 mAh·g$^{-1}$ while the current went back to 1 C. The charging capacity of TiO$_2$/GNs nanocomposite could achieve up to 201.9 mAh·g$^{-1}$ at 10 C in the first cycle, and maintained at 181.4 mAh·g$^{-1}$ after 300 cycles.

Fig.1 (a) SEM images of TiO$_2$/GNs; (b)TEM image and inset is SAED patterns of TiO$_2$/GNs.

Fig.2 (a) Rate performances of TiO$_2$/GNs; (b) Cyclic performance of TiO$_2$/GNs at 10C.

References