Non-olivine LiFePO₄ with alluaudite structure for Li rechargeable battery

Jongsoon Kim¹, Hyungsub Kim¹, Inchul Park¹, Young-Uk Park¹, Jung-Keun Yoo², Kyu-Young Park¹, Seongsu Lee³, and Kisuk Kang^{1*}

¹Department of Materials Science and Engineering, Seoul National University 599 Gwanak-ro, Gwanak-gu, Seoul 151-742, Republic of Korea

²Department of Materials Science and Engineering, KAIST 373-1 Guseong-dong, Yuseong-gu, Daejeon 305-701, Republic of Korea

³Korea Atomic Energy Research Institute, P.O. Box 105, Yuseong-gu, Daejeon 305-600, Republic of Korea

The combination of naturally abundant Fe and the stable covalent polyanion unit $(PO_4)^{3-}$ in LiFePO₄ is an important factor in the production of cost-effective, safe electrode materials for next-generation lithium ion batteries.¹⁻⁴ Since the unprecedently high power capability was reported for a LiFePO₄ electrode in 2002,² LiFePO₄ has continued to surprise researchers with its unusual physico-chemical characteristics.^{5,6} Herein, we further explored the LiFePO₄ with an alluaudite crystal structure. We found that the alluaudite LiFePO₄ shows promising electrochemical properties allowing reversible extraction and insertion of *ca.* 0.8 Li⁺ in the structure with one-phase based reaction.

A novel non-olivine LiFePO4 with an alluaudite structure was successfully prepared, and its structure was investigated in detail through combined ND and XRD analyses. The alluaudite LiFePO₄ showed fundamentally different electrochemical behavior from that of the well-known olivine LiFePO₄, while the same Fe^{2+}/Fe^{3+} redox reaction occurred. Almost all of the lithium ions in LiFePO₄ could be reversibly extracted and inserted at a reasonably fast rate, qualifying it as another possible iron-based cathode for lithium rechargeable batteries. We believe that this study will provide insight into the relationship between the structure and the electrochemical activity of LiFePO₄ chemistry.

Reference

[1] A. K. Padhi, K. S. Nanjundaswamy and J. B. Goodenough, *J. Electrochem. Soc.*, **144**, 1188–1194 (1997).

[2] S. Y. Chung, J. T. Bloking and Y. M. Chiang, *Nat. Mater.*, **1**, 123–128 (2002).

[3] P. S. Herle, B. Ellis, N. Coombs and L. F. Nazar, *Nat. Mater.*, **3**, 147–152 (2004).

[4] J. Kim, Y.-U. Park, D.-H. Seo, J. Kim, S.-W.Kim, and K. Kang, J. Electrochem. Soc., **158**, A250-A254 (2011)

[5] C. Delmas, M. Maccario, L. Croguennec, F. Le Cras and F. Weill, *Nat. Mater.*, **7**, 665–671 (2008).

[6] P. Gibot, M. Casas-Cabanas, L. Laffont, S. Levasseur, P. Carlach, S. Hamelet, J. M. Tarascon and C. Masquelier, *Nat. Mater.*, **7**, 741–747 (2008).

Figure 1. Schematic representation of alluaudite LiFePO₄. The local geometry of the chains of edge-shared FeO₆ octahedra linked by tetrahedral PO_4 units in the alluaudite.

Figure. 2 (a) Galvanostatic curves of alluaudite LiFePO₄ during 25 cycles at C/20 (inset: cyclability of alluaudite LiFePO₄ during 25 cycles at C/20), (b) discharge curves of alluaudite LiFePO4 as a function of C rate from C/20 to 3C.

Figure. 3 Normalized Fe K-edge XANES spectra for alluaudite Li_x FePO₄.