Synthesis and conductivity of multiwalled carbon nanotubes modified poly(vinyl alcohol)/ poly(diallyldimethylammonium chloride) as alkaline anion-exchange membranes

Jing Zhang, Ying Gao, Tianchi Zhou, Jinli Qiao^{*} College of Environmental Science and Engineering, Donghua Universtiy, 2999 Ren'min North Road, Shanghai 201620, China *qiaojl@dhu.edu.cn

The alkaline membrane fuel cells (AMFCs), which use the anion-exchange membranes to display the protonexchange membranes with OH⁻ anions instead of H⁺ ions, have evoked considerable attention due to their faster electrokinetics, lower fuel crossover, reduced CO poisoning, and use of non-precious metal catalysts [1]. In the development of AMFCs, alkaline anion-exchange membranes (AAEMs) play a critical role to make a breakthrough in AMFC performances. However, AAEMs are usually unstable in alkaline media especially at $60^{\circ}C$ and at high temperatures above KOH concentrations. Recent research has focused on the of multiwalled carbon nanotubes introduction (MWCNTs) [2-3] or other inorganic filler [4] into matrix to improve the durability of the membranes. Compared to other inorganic fillers as conducting reinforcements, polymeric nanocomposites with MWCNTs can form a conducting path at relatively low concentrations owing to their high aspect ratios and high surface areas [5-7]. Based on this conception, we here report novel series of alkaline anion-exchange membranes, poly(vinyl alcohol)/ poly(diallyldimethylammonium chloride) (PVA/PDDA) modified MWCNTs with different structures.

The membranes were prepared by a simple solutioncasting method, where PVA (99% hydrolyzed, average molecular weight Mw = 86,000-89,000; Aldrich) was fully dissolved in water to make a 10% solution at 90°C. PDDA (20% water solution, average Mw = 400,000-500,000, Aldrich). MWCNTs were then mixed with the above PVA solution to cast a membrane at ambient temperature. Three different MWCNTs were supplied by the AlphaNano Technology Co. Ltd., China, namely the pristine MWCNTs (purity > 95wt.%, length ~ 15 μ m, diameter 30-50 nm,), carboxyl-functionalized MWCNTs (MWCNTs-COOH) (purity > 95wt.%, length ~ 10 μ m, diameter 30-50 nm, -COOH 0.5-3wt.%) and hydroxylfunctionalized MWCNTs (MWCNTs-OH), (purity>95%, length ~ 10 µm, diameter 30-50 nm, -OH 1-7wt.%). Then the membranes were treated by thermal and chemical cross-linking procedures and ion-exchange with 2 M KOH solution. Standing and flat membranes were obtained with a thickness about 70-90 μ m. The effects of thermal cross-linking temperature and MWCNTs addition on membrane proton conductivity are studied using AC impedance technique.

As a typical candidate, Fig. 1 shows the membrane pictures of PVA/PDDA and PVA/PDDA/MWCNTs, and Fig. 2 shows the ionic conductivity (σ_{Cl}) and water uptake (*WU*) of PVA/PDDA/MWCNTs membrane. In order to explore the most suitable thermal cross-linking temperature, the σ_{Cl} and *WU* of PVA/PDDA (1:0.5 by mass) membranes with the addition of 1 wt.% MWCNTs have been measured, while the thermal cross-linking time and chemical cross-linking time were both kept for 1 h.

At this situation, the membranes were treated without KOH immersing and the conductivity is due to Cl⁻, which is lower than the OH⁻ conductivity. From Fig. 2, we can see that the σ_{Cl}^- values increased greatly with increasing thermal cross-linking temperature and reached 8.73×10^{-3} S cm⁻¹ when the heat-treatment temperature was at 160° C. For obtaining both good mechanical property and high conductivity of the membranes, in this work, the annealing temperature of 150° C for 1 h was found to be best condition for thermal cross-linking reaction. The details will be reported in the meeting.

References

- 1. J. Zhou, M. Ünlü, I. Anestis-Richard, P.A. Kohl, Journal of Membrane Science, 350 (2010) 286.
- 2. P. M. Ajayan, Chemical Review, 99 (1999) 1787.
- N. Li, F.Zhang, J. Wang, S. Li, S. Zhang, Polymer, 50 (2009) 3600.
- Y. Su, Y. Liu, D. Wang, J. Lai, Michael D. Guiver, B. Liu, Journal of Power Sources 194 (2009) 206.
- H. Meng, G. X. Sui, P. F. Fang, R. Yang, Polymer, 49 (2008) 610.
- X. Zhao, T. Bryan, T. Chu, B. Ballesteros, W. Wang, C. Jonston, M. S. John, S. G. Patrick, Nanotechnology, 20 (2009) 9.
- H. C. Kuan, C. C. Ma, W. P. Chang, S. M. Yuen, H. H. Wu, T. M. Lee, Comp. Sci. Technol. 65 (2005) 1703.

Fig. 1 Membrane pictures of PVA/PDDA membrane and PVA/PDDA/MWCNTs (1 wt.%) membrane. Polymer composition: PVA/PDDA = 1:0.5 by mass.

Fig. 2 Cl⁻ conductivity and WU of PVA/PDDA/MWCNTs (1 wt.%) as a function of thermal cross-linking temperature. Polymer composition PVA/PDDA = 1:0.5 by mass.