Hot Hole-Induced Device Degradation by Drain Junction Reverse Current

K. S. Kim^{a,b}, J. E. Song^a, D. H. Song^a and B. D. Choi^{b,*} ^a Memory Division, Samsung Electronics Co. ^b Sungkyunkwan University, Korea.

Components of drain leakage currents in the off-state of MOSFET are gate-induced drain-leakage (GIDL) and drain junction reverse currents. Device degradation phenomenon and mechanism by GIDL have been well known, but those by drain junction reverse current (I_{DJR}). have not. In this paper, device degradation mechanisms by drain junction reverse current in the off-state were studied through *I-V* curves (V_{TH} and mobility) and charge pumping technique.

Experience & Result

N-channel MOSFETs (N-MOSFETs) were fabricated, which were used as the high-voltage core circuit of flash memory chip. The gate oxide (SiO₂) was grown by oxidation to a thickness of 140 Å. The nitride spacer length was 0.14 μ m, and the gate width and length were 10 and 0.44 μ m, respectively. The overlapped length between the gate and the drain was 0.0315 μ m.

A variety of drain current measurement configurations were shown in Fig. 1, and each measured drain currents from Fig. 1 were shown in Fig. 2. The drain current curves of Fig. 2 (a) and (b) are laid on the same line, and, I_{GIDL} pictured in Fig. 2 (c) occurs when $V_D > 13$ V; its value is very small compared with the drain currents of Fig. 2 (a) and (b). In conclusion, it is possible to ignore I_{GIDL} in cases of which the V_D is less than 13 V, and the drain currents of Fig. 2 (a) and (b) are simply drain junction reverse current (I_{DJR}) . Figure 3 shows gate current according to drain voltage under the measurement conditions of Fig. 2 (a). The gate current has a negative value, which means holes were injected to the gate under I_{DJR} stress of Fig. 1 (a).

Device degradation after I_{DJR} stress was evaluated by changes of V_{TH} and mobility. It is well known that the decrease of V_{TH} is influenced by trapped holes, and the decrease of mobility is influenced by interface traps. As shown in Fig. 4, as stress V_D increased, V_{TH} and mobility decreased, which means that hole trapping and interface traps were generated (stress condition: V_D =11.6 V, 100 s with Fig. 1 (a) condition). In addition, the presence of the interface traps implies that drain off-leakage current (I_{off}) can increase. Figure 5 shows the I_{off} increased by interface traps after stress.

Device degradation phenomenon by I_{DJR} is similar to that by IGIDL. Namely, holes generated in the drain junction depletion region were injected into the gate and trapped into the gate oxide, reducing V_{TH} and mobility (μ_{eff}). However, the location of charge injection is somewhat different between I_{GIDL} and I_{DJR} . In the case of I_{GIDL} , electron-hole pairs are generated in the gate-drain overlap region; in the case of IDJR, however, electron-hole pairs are generated in the drain junction depletion region. Figure 6 shows the lateral profile of trapped holes extracted from the charge pumping method after stress (I_{DJR} stress was $V_D = 11.6$ V for 100 s under the conditions of Fig. 1 (a), and I_{GIDL} stress was $V_D = 15$ V for 100 s under the conditions of Fig. 1 (c)). Here, the absolute value of number of trapped holes (N_{ot}) according to the stress type is not important because stress conditions were different between I_{DJR} and I_{GIDL} stress. Electron-hole pairs by I_{DJR} are most likely to generate at the metallurgical drain junction where the lateral electrical field is greatest, and electron-hole pairs by I_{GIDL} is likely to generate at the gate-drain overlap region. Therefore, the point at which N_{ot} by I_{DJR} stress increases is closer to the channel than that of I_{GIDL} , as shown in Fig. 6.

Fig. 1. Drain current measurement configurations.

Fig. 4. Degradation of threshold voltage (V_{TH}) and mobility (μ_{eff}) after I_{DJR} stress.

Fig. 2. Drain currents under measurement conditions depicted in Fig. 1.

Fig. 5. Degradation of drain offleakage current (I_{off}) after I_{DJR} stress

Fig. 3. Gate current according to drain voltage under the measurement conditions of Fig. 2 (a)

Fig. 6. Lateral profile of trapped holes extracted using the charge pumping method after I_{DJR} stress.