High Quality of $Ge_{1-x} Si_x$ (0.9 $\le x \le 0.95$) Buffers Grown on 6⁰ off Si(100) by Using Low Temperature Ge Seed Layer.

C. L. Nguyen^a, E. Y. Chang^{a,b}, H. Q. Nguyen^a, B. T. Tran^a, S. H. Tang^a, Y. H. Su^a, G. L. Luo^c

^a Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu 300, Taiwan, ROC

^bDepartment of Electronics Engineering, National Chiao Tung University, Hsinchu 300, Taiwan, ROC

^cNational Nano Device Laboratories, Hsinchu 300, Taiwan, ROC

Abstract

High structural quality, really rich germanium (Ge), smooth surface and fully relaxation Ge_{1-x} Si_x ($0.9 \le x \le 0.95$) buffers is grown on 6⁰ off Si(100) substrate by using ultra high vacuum chemical vapor deposition (UHV-CVD). Low temperature (LT) Ge seed layer was using in order to improve the quality of Ge_{1-x} Si_x buffers. Within this study, the LT-Ge seed layer is deposited directly on Si substrate at a low temperature of 315° C. After that, stress free Si_{0.1}Ge_{0.9} and Si_{0.05}Ge_{0.95} layer are grown respectively. An in-situ annealing process is also performed for Si_{0.1}Ge_{0.9}/LT-Ge layers to increase the degree of relaxation. The final structure is characterized by atomic force microcopy (AFM), X-ray diffraction (XRD), using reciprocal space maps (RSMs), cross –sectional transmission electron microcopy (XTEM) to determine the buffers thickness, its surface morphology, crystallinity and state of strain.