The electrolyte monitoring of a

vanadium redox flow battery

H. Al-Fetlawi

Electrochemical Engineering Department,

College of Engineering,

University of Babylon, Hilla, Babylon, IRAQ.

Redox flow batteries (RFBs) have received increasing attention over the last few years as a viable energy storage technology. The different chemistries and features of the various RFBs currently under development have been reviewed [1]. The all-vanadium redox flow battery (VRFB) containing V(II)/V(III) and V(IV)/V(V) redox couples in the negative and positive half-cell electrolytes, respectively [2, 3], is the most widely studied RFB [4, 5]. A series of carbon felts was examined by cyclic voltammetry to investigate their suitability as an electrode material for the all-vanadium redox flow battery. A commercially supplied vanadium electrolyte of unknown concentration was analyzed by UV-visible spectroscopy and was shown to contain VO^{2+} and V^3 ions in a ratio of 4.8:1 with a total vanadium concentration of 1.5 mol dm⁻³ in 4 mol dm⁻³ H₂SO₄ (Figure 1). A unit laboratory redox flow battery (100 cm² membrane area) was assembled using carbon felts and planar carbon feeders as the positive and negative electrodes with a Nafion[®] 115 proton exchange membrane. Charge-discharge experiments using both 1.5 mol dm⁻³ and 1.1 mol dm⁻³ vanadium electrolytes at volumetric flow rates in the range of 0.5 to 3 cm³ min⁻¹ showed that extremely high charge efficiencies are possible, indicating that the rates of gas evolution reaction are slow under the practical conditions considered (Figure 2). At a vanadium concentration of 1.1 mol dm^{-3} , the best flow rate was found to be in the range 1.5-2 cm³ min⁻¹ while at 1.5 mol dm⁻³, the best performance (highest overall efficiency) was found to be at 1.5 cm³ min⁻¹. Higher flow rates had a detrimental effect of the efficiencies, particularly the charge efficiency. In fact, the differences in the efficiency values between 0.5 and 1.5 m cm³min⁻¹ were small (Table 1), implying that operating the system at 0.5 cm³ min⁻¹ would be cost effective when the total power consumption, including for the auxiliary components, is taken into account. The 1.1 mol dm⁻ solution also exhibited significantly higher concentration polarization up to a reasonably high flow rate. Operating with this concentration therefore requires more power to achieve good performance and avoid component degradation as a result of high local potentials. At a constant current density charge and discharge of 100 mA cm^{-2} for 45 minute half-cycles (and <30 cycles), the typical voltage efficiencies were 65 %.

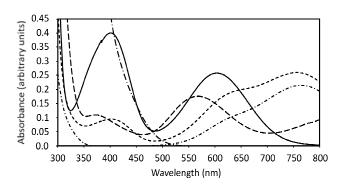


Figure 1: UV-visible spectra for the vanadium solutions obtained during the electrochemical reduction of dissolved V_2O_5 (long dashed dotted line = VO_2^+ , short dashed dotted line = VO^{2+} , solid line = V^{3+} , long dashed line = V^{2+} and short dashed line = commercially supplied vanadium solution).

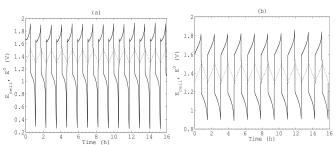


Figure 2: Charge-discharge curves (cycles 1 - 12) using an electrolyte with (a) 1.1 mol dm⁻³ and (b) 1.5 mol dm⁻³ vanadium ions in 4 mol dm⁻³ H₂SO₄. The current density was maintained at 100 mA cm⁻² during charge and discharge and the flow rate was 1 cm³ min⁻¹. Cut-off values for the open-circuit cell voltage of 1.5 V during charge and 1.3 V during discharge were used to define the charge and discharge times, respectively. Solid line: cell voltage; dashed line: electrolyte monitoring open-cell voltage; dotted line: current density. The cell contained 100 x 100 x 4 mm 'GFA' felt electrodes in each half-cell compartment.

Table 1: Summary of results obtained from charge/discharge experiments on the VRFB at 1.1 mol dm⁻³ and 1.5 mol dm⁻³ vanadium ion concentrations in 4 mol dm⁻³ H₂SO₄ at 23 °C and at controlled flow rates (0.5, 1, 1.5, 2.0 and 3.0 cm³ min⁻¹). All results were obtained at a constant current density of 100 mA cm⁻² such that the charge efficiency is nearly 100 %.

Vanadium concentration (mol dm ⁻³)	Volumetric flow rate (cm ³ min ⁻¹)	% Voltage efficiency	% Energy efficiency
1.1	0.5	44	43
	1.0	55	55
	1.5	59	59
	2.0	61	61
	3.0	61	61
1.5	0.5	65	64
	1.0	65	65
	1.5	66	67
	2.0	65	66
	3.0	63	63

References

[1] C. Ponce de León, A Frías-Ferrer, J. González-García, D.A. Szánto, F.C. Walsh, J. Power Sources 160 (2006) 716.

[2] E. Sum and M. Skyllas-Kazacos, J. Power Sources 15 (1985) 179.

[3] E. Sum, M. Rychcik and M. Skyllas-Kazacos, J.

- Power Sources 16 (1985) 85.
- [4] Ch. Fabjan, J. Garche, B. Harrer, L. Jörissen, C. Kolbeck, F. Philippi, G. Tomazic, F. Wagner, Electrochim. Acta 47 (2001) 825.

[5] L. Joerissen, J. Garche, Ch. Fabjan, G. Tomazic, J. Power Sources 127 (2004) 98.