Influence of Triple MPL Coated GDL on the PEFC Performance under Low and High Humidity

Tatsumi KITAHARA1, Hironori NAKAJIMA1
Masaoki Inamoto1 and Kosuke Shinto1
1 Kyushu University, 744 Motooka, Nishi-ku, Fukuoka
819-0395, Japan

The gas diffusion layers (GDLs) coated with a hydrophobic microporous layer (MPL) have been commonly used to improve the water management properties of polymer electrolyte fuel cells (PEFCs) [1]. We have previously reported a hydrophilic and hydrophobic double MPL coated GDL is effective to achieve further enhancement of the PEFC performance under low humidity [2]. The double MPL coated GDL is also effective to reduce flooding under high humidity, which results in higher PEFC performance compared with that for a conventional hydrophobic MPL coated GDL [3]. In the present study, a novel triple MPL coated GDL, in which a hydrophilic layer was coated on a hydrophobic double MPL, was developed to enhance the PEFC performance under both low and high humidity.

PEFC performance tests were conducted under low humidity conditions of 0% RH at the cathode inlet and 60% RH at the anode inlet. PEFC performance tests were also conducted under high humidity conditions of 100% RH at the anode and cathode inlets. The cell temperature was set at 75°C. The hydrogen utilization was set at 70% and the air utilization was set at 60%. The active area of the MEA (GORE PRIMEA® 5580) was 4.2 cm². The GDL used at the anode was a commercial carbon paper without an MPL (SGL SIGRACET® 24BA). Figure 1 shows the GDLs used at the cathode; the hydrophobic MPL, the double MPL, and the triple MPL coated GDLs. The hydrophobic MPL coated GDL consisted of a carbon paper substrate (SGL24BA) coated with an MPL of 30 mass% PTFE and carbon black. For both the double MPL and the triple coated GDLs, a hydrophilic layer of 25 mass% titanium dioxide (TiO₂), 5 mass% silicone, and carbon black was coated on the hydrophobic MPL coated GDL. The PTFE content in the hydrophobic intermediate MPL of the double MPL coated GDL was varied between 10 and 40 mass%. For the triple MPL coated GDL, the best performance was obtained with 30 mass% PTFE content in the hydrophobic intermediate MPL. The PEFC performance obtained with the triple MPL (PTFE30+40%) coated GDL was lower than that with the double MPL coated GDL. However, the triple MPL (PTFE30+10%) coated GDL, in which the hydrophobic double MPL had an appropriate gradient of hydrophobicity due to variation of the PTFE content, was effective at reducing flooding. This resulted in a much higher PEFC performance under high humidity than that for the double MPL coated GDL.

References