Opportunities and Challenges of Atom Switch
For Low-power Programmable Logic

M. Tada, T. Sakamoto, and H. Hada

Low-power Electronics Association & Project (LEAP)
West 7, 16-1 Onogawa, Tsukuba 305-8569, Japan
E-mail: tada@leap.or.jp

With the increasing complexity of functions in digital circuit, flexibility and energy-efficiency play important roles in addressing future computing systems. Heterogeneous computing architecture using a CPU and a hard-wired programmable unit as an off-loader becomes of great interest for lowering the system power. However, a conventional programmable unit, e.g. FPGA, suffers from its large chip area and power consumption. One solution for overcoming the issues of the conventional FPGAs is a replacement of the conventional switch element composed of SRAM and transmission gate (TMG) to the BEOL devices, for instance, a compact resistive switch having a high on/off current ratio (Fig.1).

Atom switch is an electrochemical resistive-change device categorized in the cation type [1]. The electrochemical phenomenon is based on electrolysis of the Cu electrode to produce a precipitation of Cu at the Ru electrode, which realizing a high ON/OFF current ratio. Previously, we reported a replacement of the SRAM-based switch with atom switch integrated in Cu-BEOL (Fig.2) [2-8]. A reduction of the forming voltage and high ON/OFF-state reliabilities has been realized by introducing a polymer solid-electrolyte (PSE) [2], a complementary atom switch (CAS) [3] and alloy electrodes [8].

In this talk, the developed technologies are reviewed and the opportunities and challenges of the atom switch are discussed especially for low-power programmable logic applications.

Acknowledgement This work was performed as “Ultra-Low Voltage Device Project” funded and supported by METI and NEDO. A part of the device processing was operated by AIST, Japan.

References