Mo/TiN novel composite powder for an alkali metal thermal to electric converter (AMTEC) electrode

S.D. Kim, S.Y. Kim, J.H. Joo, M.S. Seo and S.K. Woo

Korea Institute of Energy Research Daejeon 305-343, Republic of Korea

Up till now, thin and porous Mo electrodes have shown the best performance as AMTEC electrodes [1-4]. This result is due to the formation of Na-Mo-O compounds, which might be responsible for the enhancement of Na transport through the Mo electrode. However, from the work of Williams et al. [4], it is confirmed that this compound evaporated at temperatures above 800 °C, resulting in the degradation of the electrode performance. To develop better electrode materials for use at high temperatures, Nakata et al. [5] investigated the reactivity of a ceramic electrode with liquid sodium, and TiN, TiC, NbN and NbC were considered as candidates for the AMTEC electrode material [5,6]. Although TiN and TiC can be used for the AMTEC electrode, Mo is the best material by far in terms of the electrochemical performance and the activity with a Na vapor [6].

Thus, the aim of this research is to achieve an AMTEC electrode with high electrochemical performance and microstructural stability at high temperatures using a Mo/TiN composite powder. The Mo/TiN composite the powder offers following advantages: (1)microstructural stability - sintering of the metallic (Mo) phase is controlled by the conjugated ceramic (TiN) phase, (2) high interfacial affinity with the BASE - wet processes (screen printing, dip-coating, etc.) can be used for electrode coating, (3) self-assembly of a porous microstructure without using a pore-former, (4) mixed homogeneity and (5) TiN and Mo supplementing effects.

Mo/TiN composite powder has been synthesized by a Pechini-type polymerizable complex method that uses ethylenediaminetetraacetic acid (EDTA) as a chelating reagent and ethylene glycol (EG) as a polymerization precursor. A commercial titanium nitride (TiN, Aldrich) was used as a support, i.e. a core material, and molybdenum shells were synthesized from ammonium molybdate ((NH₄)₆Mo₇O₂₄·4H₂O), Aldrich) aqueous polymeric solution.

The composite powder is primarily composed of submicron (= 400 - 800 nm) particles that are crystallized on a core (> $3 \sim 5 \mu m$) particle surface and was successfully synthesized by a sol-gel method with EDTA as the chelating reagent. The interfacial affinity between the alumina substrate and Mo/TiN composite electrode is significantly improved compared with that of the Mo electrode (Fig. 1). The electrode made from the Mo/TiN composite powder exhibited high electrical conductivities of 1000 Scm⁻¹ at 300 °C and 260 Scm⁻¹ at 700 °C, even with a reduced Mo content (50 vol%) (Fig. 2). The Mo/TiN composite electrode exhibited excellent tolerance against grain growth at elevated temperatures. The average growth rate of the Mo grains in the Mo/TiN composite electrodes was controlled and less than 0.5 %/time (0.62 \rightarrow 0.65 µm), while the growth rate in the Mo electrodes was 306.7 %/time (0.24 \rightarrow 3.92 $\mu m)$ during the thermal cycling tests. From these results, it can be concluded that the Mo/TiN composite powder has very effective electrical properties and high-temperature stability.

SEM Micrographs of a Mo/TiN

Schematic diagram of a Mo/TiN composite electrode

Fig. 1. SEM micrographs and Schematic diagram of Mo/TiN composite electrode for AMTEC.

Fig. 2. Electrical conductivity of the electrodes as a function of temperature.

Reference

[1] K. Tanaka, Experimental evaluation of electrode conversion efficiency of alkali metal thermal to electric converter, Heat Transfer-Asian Research 30(3) (2001) 234-244.

[2] H. Yokokawa, T. Horita, N. Sakai, T. Kawada, M. Dokiya, Chemical thermodynamic stabilities of electrode/electrolyte interfaces of high temperature electrochemical cells, Solid State Ionics 78 (1995) 203-210.

[3] R.M. Williams, G. Nagasubramanian, S.K. Khanna, C.P. Bankston, A.P. Thakoor, T. Cole, The role of oxygen in porous molybdenum electrodes for the alkali metal thermoelectric converter, J. Electrochem. Soc. 133(8) (1986) 1587-1595.

[4] H. Nakata, T. Nagata, K. Tsuchida, A. Kato, Ceramic electrodes for an alkali metal thermo-electric converter (AMTEC), Journal of Applied Electrochemistry 23 (1993) 1251-1258.

[5] K. Tsuchida, T. Nagata, H. Nakata, A. Kato, LaB6 and TiB2 electrodes for the alkali metal thermoelectric converter, J. Mater. Sci. 33 (1998) 755-762.

[6] Q. Fang, R. Knodler, Porous TiB2 electrode for the alkali metal thermoelectric convertor, J. Mater. Sci. 27 (1992) 6725-3729.

Acknowledgement

This work was conducted under the framework of Research and Development Program of the Korea Institute of Energy Research(KIER) (B3-2436-01).