Development on an all-wet-etch process chemistry for the patterning of metal conductors in IGZO thin-film transistors

Kurtis S. Leschkies, Steven Verhaverbeke, Dong Kil Yim, John M. White, Robert J. Visser

Applied Materials
3225 Oakmead Village Drive, Santa Clara, CA 95052

Today, metal oxide thin-film transistors (TFTs), specifically those based on indium-gallium-zinc oxide (IGZO), have been established as one of the most promising technologies for leading next-generation flat panel displays due to their attractive electronic properties: low power consumption (~33% vs. a-Si TFTs for a 10-inch panel) and high electron mobility (20–30x higher than a-Si). Together, these properties allow for scalable and low-cost manufacturing of higher-resolution displays without sacrificing aperture ratio. A transistor’s electrical performance, however, is intimately related to its fabrication processes, especially during critical etching steps when shaping both the source/drain (S/D) metal conductors and the semiconductor channel region.

Typically, a dry-etch process is used to define the S/D metal conductors because of its superior selectivity towards metal versus a photoresist (PR) and its high anisotropy which prevents excessive undercutting of metal that’s protected by the PR. However, aside from the low throughput and scaling difficulties associated with dry-etching, it has also been shown to degrade a TFT’s electron mobility by up to 15% (compared to a wet-etched TFT) due to the structural damage it causes to the semiconductor’s surface (through ion bombardment) and bulk structure (via plasma radiation); Additional adverse effects of a dry-etch to the TFT include high threshold voltages, high off-currents, and a divergence of the transfer characteristic curves as a function of applied S/D voltage. Consequently, it could be highly advantageous for key players in display technologies to employ a wet-chemistry approach during critical etching steps, particularly if it encompasses the benefits of dry-etch (e.g., high selectivities) without degrading the electrical properties of the transistor.

Here, we discuss the development of an all-wet-etch process chemistry with high metal selectivity that is capable of shaping the structures of an IGZO TFT (Figure 1a) to customer specifications. Our approach involves a two-step etching process that (i) selectively removes only the metal conductor (Cu) and temporarily stops at the underlying metal adhesion layer (Mo or Ti) (Figure 1b), and then (ii) selectively removes the metal adhesion layer with minimal impact to the IGZO semiconductor and metal conductor (Figure 1c). By pursuing a two-step approach, where each chemistry is designed to target a specific metal with high selectivity, the risk of excessive undercutting as well as severe anisotropy which prevents excessive undercutting of metal that’s protected by the PR is significantly mitigated.

Figure 1. Schematic depicting our wet-etch process approach of (a) an IGZO TFT. First, the metal conductor (Cu) is selectively removed (b), followed by the metal adhesion layer (Mo or Ti), (c).

Figure 2. Cross-section TEM images of blanket Cu and IGZO films etched in an aqueous solution of 5 wt. % citric acid and 2.5 wt. % hydrogen peroxide at 50 °C.

Figure 3. Auger line-scan of an IGZO TFT channel etched in an aqueous solution of (i) 5 wt. % citric acid and 2.5 wt. % hydrogen peroxide at 40 °C, followed by (ii) a 50 °C heated mixture containing 80 vol.% hydrogen peroxide solution and 20 vol.% containing TMA. The intensity of the Cu and Mo signal is zero (noise level) across the 500 Å channel length. Mo signal at the S/D contact is also zero due to the thickness of the Cu metal.