Enhanced Catalytic Oxygen Reduction Performance from Titania Supported PtPb Nanoparticles

Takao Gunji¹, Govindachetty Saravanan², Shingo Kaneko³, Genki Kobayashi¹, Futoshi Matsumoto¹

 ¹Department of Material and Life Chemistry, Faculty of Engineering, Kanagawa University
3-27-1, Rokkakubashi, Kanagawa-ku, Yokohama-shi, Kanagawa 221-8686, Japan
²CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, NAGPUR-440020, India.
³Research Institute for Engineering,

Kanagawa University, 3-27-1, Rokkakubashi, Kanagawa-ku, Yokohama-shi, Kanagawa 221-8686, Japan

Stable and long-term electrocatalytic performance towards cathodic oxygen reduction reaction (ORR) was achieved by impregnation of PtPb nanoparticles (NPs) on anatase titania (TiO₂) support. Organometallic precursors, H₂PtCl₆.6H₂O and Pb(CH₃COO)₂ and TiO₂ supports were mixed in anhydrous methanol and then co-reduced using sodium borohydride. Finely dispersed PtPb NPs with the average particle size between 2 and 4 nm were achieved through wetchemical synthetic route. PtPb/TiO2 showed superior catalytic activity both in terms of onset potential as well as cathodic current density than that of Pt/TiO₂ towards ORR. The onset potential and cathodic current density of PtPb/TiO₂ was 0.60 V and -0.89 mA mg $^{\text{-}1}$ at 0.2 V. Whereas, the onset potential and cathodic current density of Pt/TiO₂ was 0.43 V and 0.17 mA mg⁻¹ at 0.2 V. Both onset potential and cathodic current density were not altered over 50 cycles in the case of PtPb/TiO₂, however, greatly altered in the case of Pt/VC. The leaching of Pb from PtPb NPsdispersed on TiO2 was greatly suppressed than that of TiO₂-free or Vulcan carbon (VC) supported PtPb. Impregnation of PtPb on TiO₂ can be the practical cathodic electrode catalytic materials for fuel cells in terms of its stable, enhanced catalytic performance, and leaching tolerance.