Application of Atomic Layer Deposition Tungsten (ALD W) as gate filling metal for 22nm and beyond CMOS technology

Guilei Wang, Qiang Xu, Tao Yang, Jun Luo, Jinjuan-Xiang, Jing Xu, Gaobo Xu, Chunlong Li, Junfeng Li, Jiang Yan, Chao- Zhao, Dapeng Chen and Tianchun Ye

Key Laboratory of Microelectronics Devices & Integrated Technology, Institute of Microelectronics of Chinese Academy of Sciences, Beijing, 10029, China

As CMOS technology downscales into sub-22 nm nodes, high-K & metal gate (HKMG) technology has become the mainstream in order to reduce leakage as well as to improve device performance. Two different HKMG integration schemes, i.e., gate-first and gate-last (replacement gate) process [1], [2], which are usually adopted in the mass production fabrication. In the replacement gate process, one of the biggest challenges is to fill gate trench of high aspect-ratio with conductive metals, such as Al [3] or W [4]. The common Al gate metal sputtered using physical vapor deposition (PVD) is, however, no longer a better choice for extremely downscaled devices. Even with the help of Al re-flow process at ~425 °C, voids in filling Al gate occasionally occurs due to the overhang at two top corners during PVD. In addition, it is known that Al Chemical Mechanical Polishing (CMP) is also tough since surface Al₂O₃ is hard to be removed. As a consequence, we propose to fill gate trench with W by means of atomic layer deposition (ALD) in this work. Because of the excellent filling capability of ALD as well as the mature W CMP process, an investigation of ALD W as the metal gate in the replacement gate process is, therefore, of great interest.

W films were grown in ALD chamber using two different precursors (SiH₄ and B_2H_6). The growth rate of W films using SiH₄ 0.67 nm/cycle is larger than that using B₂H₆ 0.31 nm/cycle as shown in Fig. 1. In Fig. 2, the plot of thickness vs. sheet resistance indicates that W film grown using B₂H₆ has lower resistivity compared to W film grown using SiH₄. Table I shows the compositions of as-grown W films analyzed by XPS. The much higher B content in W films grown using B2H6 should account for the lower resistivity in Fig. 2. Diffraction spectrums shown in Fig. 3 display that W film grown using SiH₄ is polycrystalline whereas W film grown using B2H6 is amorphous. The filling capability of ALD W films using SiH₄ or B₂H₆ is tested on devices with 22 nm gate length as shown in Fig. 4. It can be seen that W filling using B₂H₆ is superior to that using SiH₄ since it shows voidfree W filling. In order to verify if ALD W filling using B_2H_6 affects the equivalent oxide thickness (EOT) due to B diffusion into high-K dielectric, diodes with high-K dielectric & ALD W films using both SiH₄ and B₂H₆ were fabricated. The C-V characteristics of as-fabricated both P-type and N-type diodes are shown Fig. 5. As seen, no obvious difference in leakage and EOT can be scrutinized for diodes made of high-K dielectric & ALD W films using both SiH_4 and B_2H_6 .

In conclusion, ALD W using SiH₄ and B_2H_6 were investigated. In contrast to ALD W using SiH₄, ALD W using B_2H_6 shows lower growth rate, resistivity and better gap filling capability. The incorporation of B in ALD W films doesn't affect the C-V characteristics. Therefore, ALD W using B_2H_6 is a good gate filling metal which can be widely used in advanced devices.

Acknowledgements

This work was supported by Beijing Natural Science Foundation (Grant No.4123106)

References

- [1] Sung Kee Han et.al. IEDM, Tech.Dig, P621, 2006
- [2] Martin M. Frank et.al. IEEE, P50, 2011
- [3] Y.Tateshita et.al. IEDM, P63, 2006
- [4] K.Misytry et.al. IEDM, P247, 2007

Table I. Compositions of ALD W grown using SiH_4 and B_2H_6 (at. %) by XPS

Fig. 3 XRD spectrum of ALD W grown using SiH_4 and B_2H_6

Fig. 4 Gap filling capability of ALD W grown using B_2H_6 (a) and SiH₄ (b) tested on gate trench of 22 nm gate length

Fig. 5 C-V characterisitics of N-type (a) and P-type (b) diodes