Understanding Li⁺-Carbonate Interaction in Electrolytes with ¹⁷O-NMR

X. Bogle, ¹ R. Vazquez, ¹S. Greenbaum, ¹ A. v. Cresce, ² and Kang Xu²

¹ Department of Physics and Astronomy, Hunter College of City University of New York

² Electrochemistry Branch, Power and Energy Division, Sensor and Electron Devices Directorate U. S. Army Research Laboratory

To understand how Li^+ interacts with individual carbonate molecules in nonaqueous electrolytes, we conducted natural abundance ¹⁷O NMR measurements on electrolyte solutions of 1 M LiPF₆ in a series of binary solvent mixtures of ethylene carbonate (EC) and dimethyl carbonate (DMC).

It was observed that the largest changes in ¹⁷O chemical shift occurred at the carbonyl oxygens of EC, firmly establishing that Li⁺ strongly prefers EC over DMC in typical nonaqueous electrolytes, while mainly coordinating with carbonyl rather than ethereal oxygens. Further quantitative analysis of the displacements in ¹⁷O chemical shifts renders a detailed Li⁺-solvation structure in these electrolyte solutions, revealing that maximum six EC molecules can coexist in the Li⁺-solvation sheath, while DMC association with Li^+ is more "noncommittal" but simultaneously prevalent. This discovery, while aligning well with previous fragmental knowledge about Li⁺-solvation, reveals for the first time a complete picture of Li⁺ solvation structure in nonaqueous electrolytes.

Fig. 1 Schematic drawing of Li⁺-solvation sheath structure and the corresponding ¹⁷O-NMR chemical shifts.

Fig. 2 ¹⁷O-NMR chemical shifts as function of solvent mixing and Li-salt addition.

Fig. 3 17 O-NMR chemical shifts of carbonyl- and ethereal-oxygens in cyclic and acyclic carbonates as the result of Li⁺-induction.

Fig. 4 Detailed structure Li⁺-solvation with primary- and secondary spheres.

Reference:

^{1.} X. Bogle, R. Vazquez, S. Greenbaum, A. v. Cresce, and Kang Xu, J. Chem. Phys. Lett., **2013**, 4, 1664