Electrochemical characterization of CF$_x$ material for an internally funded project
Ganesan Nagasubramanian, Kyle Fenton
2546 Advanced Power Sources R & D Department
Sandia National Laboratories
Albuquerque, NM 87185
Ph: 505-844-1684
Fax: 505-844-6972
Email: gnnagasu@sandia.gov

Introduction:
Recent classification of SO$_2$ and SOCl$_2$ (these are catholytes in primary Li batteries) as a health hazard1 led to a surge of interest in CF$_x$ as a potential replacement for these chemistries. The CF$_x$ has several positive attributes including very low self-discharge and high specific capacity (865mAhr/g), but low discharge constraints remain a challenge. As the application portfolio expands to accommodate Military, Space etc. the performance requirements also increases to include wide temperature operation, high discharge capability etc. As the battery operation extends to high temperature thermal runaway also becomes a key concern and must be mitigated or possibly eliminated for a wide-spread adoption of this chemistry.

At Sandia National Labs we have the necessary in-house capability (battery prototyping, thermal abuse and materials syntheses) to address the limitations and concerns described above. We started an internally funded program to investigate CF$_x$ materials from different suppliers for electrochemical and thermal performances. We will down select the best candidate material for further optimization in large capacity cells (18650 and pouch).

For this program we purchased CF$_x$ powder materials of two different compositions ($x=1; 0.9$) from 3 different vendors designated as CF$_x$-1, CF$_x$-2 and CF$_x$-3. The typical electrode composition for Sandia coated CF$_x$ cathode is: CF$_x$ (90 wt.%); PVDF (5 wt.%); and Denka carbon (5 wt.%). Details on the coating process using our in-house prototyping capability have been published elsewhere.2 Electrodes will be evaluated in 2032 coin cells. These cells will be tested for relevant electrochemical properties including rate, performance at temperatures etc. in EC:EMC(3:7 w%)-1MLiPF$_6$. All data presented here are for $x=0.9$. EC: Ethylene Carbonate; EMC: Ethyl Methyl Carbonate.

Electrochemical Performance:

Figure 1 compares the specific discharge capacity for the CF$_x$ material from the three suppliers. While CF$_x$-1 and CF$_x$-3 show comparable cell voltage, CF$_x$-2 shows chronically lower discharge voltage but exhibits a similar specific capacity to CF$_x$-1. Data for C/100 and C/200 discharge will be discussed at the meeting.

Figure 2- CF$_x$ capacity comparison at a C/5 rate

Again CF$_x$-2 shows lower cell voltage compared to the CF$_x$-1 and CF$_x$-3. The data clearly show that the materials at this high rate (C/5) delivered marginally less specific capacity (<800 mAhrs/g) only compared to C/50 rate. However, the decrease in capacity at high rate is not significant.

Temperature Performance:

The cells were tested at four different temperatures. The expected trend in voltage (60°C>40$^\circ$C>25$^\circ$C>0$^\circ$C) was observed with temperature. The cells delivered over 800mAh/g at 60 and 40$^\circ$C and under 800mAh/g for 25 and 0$^\circ$C. Impedance data at different SOCs and temperatures will be presented at the meeting.

Acknowledgment:
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

References: