Systematic crystal field studies of Mn⁴⁺-doped perovskites A.M. Srivastava¹, M.G. Brik²

¹GE Global Research, Niskayuna, NY 12309, USA ² Institute of Physics, University of Tartu, Tartu 51014, Estonia

The deep red luminescence of the Mn^{4+} (3 d^3 electron configuration; isoelectronic with the Cr^{3+} ion) ions finds commercial application in lighting and has the potential for use in numerous other applications, that is why the optical properties of these materials are the subject of thorough investigations.

Recently we have extensively studied the crystal field effects in various perovskite crystals doped with Mn^{4+} ions (1-3). Using the exchange charge model of crystal field, we could successfully calculate the splitting of the Mn^{4+} energy levels and assign all prominent features in the experimental emission and absorption spectra.

As an example of the performed analysis, we show in Fig. 1 the experimental absorption and emission spectra of $LaAlO_3:Mn^{4+}$ together with the calculated Mn^{4+} energy levels (3). Good agreement between the calculated results and experimental spectra can be seen easily.

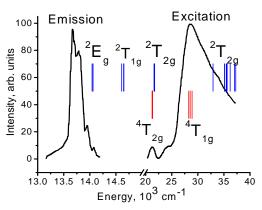


Fig. 1. Comparison of the experimental emission and excitation spectra (solid lines) with the calculated energy levels (vertical lines) of Mn^{4+} in LaAlO₃. See Ref. (3) for more details.

Special attention was paid to comparative cross-cutting studies of position of the emitting ²E level of Mn⁴⁺ ions in different perovskites. According to the theory of Tanabe and Sugano, the peak emission wavelength of the spinforbidden ²E_g→⁴A_{2g} transition is singularly dependent on the covalence of the "Mn⁴⁺-Ligand" bonding and is fairly independent of the strength of the crystalline field in a solid. This covalence of the metal-ligand bonding, which determines the energy of the Mn⁴⁺ ²E_g→⁴A_{2g} emission transition, can be changed by changing the constitution (cations and anions) of the host lattice. To rationalize variation of energy of the ²E_g→⁴A_{2g} emission, we introduced a non-dimensional parameter

$$\beta_1 = \sqrt{\left(\frac{B}{B_0}\right)^2 + \left(\frac{C}{C_0}\right)^2} \quad , \tag{1}$$

where the subscript "0" refers to the values of the Racah parameters for free ion (for Mn^{4+} , $B_0 = 1160 \text{ cm}^{-1}$ and $C_0 = 4303 \text{ cm}^{-1}$), and *B* and *C* are the Racah parameters for Mn^{4+} ions in a given crystal.

Fig. 2 shows how the energy of the $Mn^{4+} \ ^2E_g {\rightarrow} \ ^4A_{2g}$

transition depends on the β_1 value for a number of the perovskites. As seen from Fig. 2, the peak emission energy of the ${}^{2}E_{g} \rightarrow {}^{4}A_{2g}$ transition in this group of perovskites is linearly related to β_1 . This indicates that any description of the nephelauxetic effect for the Mn⁴⁺ containing hosts must consider both Racah parameters *B* and *C* and that the linking the ${}^{2}E_{g}$ state energy and the β_1 parameter allows for predicting the ${}^{2}E_{g}$ state position in various perovskites.

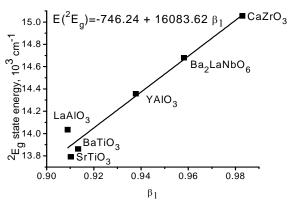


Fig. 2. The relation between the position of the $Mn^{4+2}E_g$ level and β_1 (Eq. (1)). Equation of the linear fit is given in the graph.

We believe that the proposed relation between the energy of the Mn⁴⁺ ${}^{2}E_{g} \rightarrow {}^{4}A_{2g}$ transition and decreased (as a consequence of the nephelauxetic effect) Racah parameters *B* and *C* can help in prediction of the energy of the ${}^{2}E_{g}$ state and/or β_{1} parameter in new hosts with tetravalent manganese ions. Further studies of the Mn⁴⁺doped materials are under way.

REFERENCES

 A.M.Srivastava, M.G.Brik, J. Lumin. 132, 579, (2012).
M.G.Brik, A.M.Srivastava, J.Lumin., 133, 69, (2013).
A.M.Srivastava, M.G.Brik, Opt.Mater. (2013, in press, http://dx.doi.org/10.1016/j.optmat.2013.03.021).